![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iniseg | GIF version |
Description: An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) |
Ref | Expression |
---|---|
iniseg | ⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | vex 2763 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | eliniseg 5036 | . . 3 ⊢ (𝐵 ∈ V → (𝑥 ∈ (◡𝐴 “ {𝐵}) ↔ 𝑥𝐴𝐵)) |
4 | 3 | abbi2dv 2312 | . 2 ⊢ (𝐵 ∈ V → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) |
5 | 1, 4 | syl 14 | 1 ⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {cab 2179 Vcvv 2760 {csn 3619 class class class wbr 4030 ◡ccnv 4659 “ cima 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: dfse2 5039 |
Copyright terms: Public domain | W3C validator |