ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iniseg GIF version

Theorem iniseg 5099
Description: An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.)
Assertion
Ref Expression
iniseg (𝐵𝑉 → (𝐴 “ {𝐵}) = {𝑥𝑥𝐴𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem iniseg
StepHypRef Expression
1 elex 2811 . 2 (𝐵𝑉𝐵 ∈ V)
2 vex 2802 . . . 4 𝑥 ∈ V
32eliniseg 5097 . . 3 (𝐵 ∈ V → (𝑥 ∈ (𝐴 “ {𝐵}) ↔ 𝑥𝐴𝐵))
43abbi2dv 2348 . 2 (𝐵 ∈ V → (𝐴 “ {𝐵}) = {𝑥𝑥𝐴𝐵})
51, 4syl 14 1 (𝐵𝑉 → (𝐴 “ {𝐵}) = {𝑥𝑥𝐴𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {cab 2215  Vcvv 2799  {csn 3666   class class class wbr 4082  ccnv 4717  cima 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by:  dfse2  5100
  Copyright terms: Public domain W3C validator