![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inteqi | GIF version |
Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
inteqi | ⊢ ∩ 𝐴 = ∩ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | inteq 3849 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ 𝐴 = ∩ 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∩ cint 3846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-int 3847 |
This theorem is referenced by: elintrab 3858 ssintrab 3869 intmin2 3872 intsng 3880 intexrabim 4155 op1stb 4480 bm2.5ii 4497 dfiin3g 4887 op2ndb 5114 bj-dfom 14846 bj-omind 14847 |
Copyright terms: Public domain | W3C validator |