ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0supp Unicode version

Theorem nn0supp 9125
Description: Two ways to write the support of a function on  NN0. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
nn0supp  |-  ( F : I --> NN0  ->  ( `' F " ( _V 
\  { 0 } ) )  =  ( `' F " NN ) )

Proof of Theorem nn0supp
StepHypRef Expression
1 dfn2 9086 . . . 4  |-  NN  =  ( NN0  \  { 0 } )
2 invdif 3349 . . . 4  |-  ( NN0 
i^i  ( _V  \  { 0 } ) )  =  ( NN0  \  { 0 } )
31, 2eqtr4i 2181 . . 3  |-  NN  =  ( NN0  i^i  ( _V 
\  { 0 } ) )
43imaeq2i 4923 . 2  |-  ( `' F " NN )  =  ( `' F " ( NN0  i^i  ( _V  \  { 0 } ) ) )
5 ffun 5319 . . . 4  |-  ( F : I --> NN0  ->  Fun 
F )
6 inpreima 5590 . . . 4  |-  ( Fun 
F  ->  ( `' F " ( NN0  i^i  ( _V  \  { 0 } ) ) )  =  ( ( `' F " NN0 )  i^i  ( `' F "
( _V  \  {
0 } ) ) ) )
75, 6syl 14 . . 3  |-  ( F : I --> NN0  ->  ( `' F " ( NN0 
i^i  ( _V  \  { 0 } ) ) )  =  ( ( `' F " NN0 )  i^i  ( `' F " ( _V 
\  { 0 } ) ) ) )
8 cnvimass 4946 . . . . 5  |-  ( `' F " ( _V 
\  { 0 } ) )  C_  dom  F
9 fdm 5322 . . . . . 6  |-  ( F : I --> NN0  ->  dom 
F  =  I )
10 fimacnv 5593 . . . . . 6  |-  ( F : I --> NN0  ->  ( `' F " NN0 )  =  I )
119, 10eqtr4d 2193 . . . . 5  |-  ( F : I --> NN0  ->  dom 
F  =  ( `' F " NN0 )
)
128, 11sseqtrid 3178 . . . 4  |-  ( F : I --> NN0  ->  ( `' F " ( _V 
\  { 0 } ) )  C_  ( `' F " NN0 )
)
13 sseqin2 3326 . . . 4  |-  ( ( `' F " ( _V 
\  { 0 } ) )  C_  ( `' F " NN0 )  <->  ( ( `' F " NN0 )  i^i  ( `' F " ( _V 
\  { 0 } ) ) )  =  ( `' F "
( _V  \  {
0 } ) ) )
1412, 13sylib 121 . . 3  |-  ( F : I --> NN0  ->  ( ( `' F " NN0 )  i^i  ( `' F " ( _V 
\  { 0 } ) ) )  =  ( `' F "
( _V  \  {
0 } ) ) )
157, 14eqtrd 2190 . 2  |-  ( F : I --> NN0  ->  ( `' F " ( NN0 
i^i  ( _V  \  { 0 } ) ) )  =  ( `' F " ( _V 
\  { 0 } ) ) )
164, 15syl5req 2203 1  |-  ( F : I --> NN0  ->  ( `' F " ( _V 
\  { 0 } ) )  =  ( `' F " NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335   _Vcvv 2712    \ cdif 3099    i^i cin 3101    C_ wss 3102   {csn 3560   `'ccnv 4582   dom cdm 4583   "cima 4586   Fun wfun 5161   -->wf 5163   0cc0 7715   NNcn 8816   NN0cn0 9073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1re 7809  ax-addrcl 7812  ax-0lt1 7821  ax-0id 7823  ax-rnegex 7824  ax-pre-ltirr 7827  ax-pre-lttrn 7829  ax-pre-ltadd 7831
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-ov 5821  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-inn 8817  df-n0 9074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator