ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0supp Unicode version

Theorem nn0supp 9295
Description: Two ways to write the support of a function on  NN0. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
nn0supp  |-  ( F : I --> NN0  ->  ( `' F " ( _V 
\  { 0 } ) )  =  ( `' F " NN ) )

Proof of Theorem nn0supp
StepHypRef Expression
1 dfn2 9256 . . . 4  |-  NN  =  ( NN0  \  { 0 } )
2 invdif 3402 . . . 4  |-  ( NN0 
i^i  ( _V  \  { 0 } ) )  =  ( NN0  \  { 0 } )
31, 2eqtr4i 2217 . . 3  |-  NN  =  ( NN0  i^i  ( _V 
\  { 0 } ) )
43imaeq2i 5004 . 2  |-  ( `' F " NN )  =  ( `' F " ( NN0  i^i  ( _V  \  { 0 } ) ) )
5 ffun 5407 . . . 4  |-  ( F : I --> NN0  ->  Fun 
F )
6 inpreima 5685 . . . 4  |-  ( Fun 
F  ->  ( `' F " ( NN0  i^i  ( _V  \  { 0 } ) ) )  =  ( ( `' F " NN0 )  i^i  ( `' F "
( _V  \  {
0 } ) ) ) )
75, 6syl 14 . . 3  |-  ( F : I --> NN0  ->  ( `' F " ( NN0 
i^i  ( _V  \  { 0 } ) ) )  =  ( ( `' F " NN0 )  i^i  ( `' F " ( _V 
\  { 0 } ) ) ) )
8 cnvimass 5029 . . . . 5  |-  ( `' F " ( _V 
\  { 0 } ) )  C_  dom  F
9 fdm 5410 . . . . . 6  |-  ( F : I --> NN0  ->  dom 
F  =  I )
10 fimacnv 5688 . . . . . 6  |-  ( F : I --> NN0  ->  ( `' F " NN0 )  =  I )
119, 10eqtr4d 2229 . . . . 5  |-  ( F : I --> NN0  ->  dom 
F  =  ( `' F " NN0 )
)
128, 11sseqtrid 3230 . . . 4  |-  ( F : I --> NN0  ->  ( `' F " ( _V 
\  { 0 } ) )  C_  ( `' F " NN0 )
)
13 sseqin2 3379 . . . 4  |-  ( ( `' F " ( _V 
\  { 0 } ) )  C_  ( `' F " NN0 )  <->  ( ( `' F " NN0 )  i^i  ( `' F " ( _V 
\  { 0 } ) ) )  =  ( `' F "
( _V  \  {
0 } ) ) )
1412, 13sylib 122 . . 3  |-  ( F : I --> NN0  ->  ( ( `' F " NN0 )  i^i  ( `' F " ( _V 
\  { 0 } ) ) )  =  ( `' F "
( _V  \  {
0 } ) ) )
157, 14eqtrd 2226 . 2  |-  ( F : I --> NN0  ->  ( `' F " ( NN0 
i^i  ( _V  \  { 0 } ) ) )  =  ( `' F " ( _V 
\  { 0 } ) ) )
164, 15eqtr2id 2239 1  |-  ( F : I --> NN0  ->  ( `' F " ( _V 
\  { 0 } ) )  =  ( `' F " NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   _Vcvv 2760    \ cdif 3151    i^i cin 3153    C_ wss 3154   {csn 3619   `'ccnv 4659   dom cdm 4660   "cima 4663   Fun wfun 5249   -->wf 5251   0cc0 7874   NNcn 8984   NN0cn0 9243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-inn 8985  df-n0 9244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator