ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaexel Unicode version

Theorem iotaexel 5958
Description: Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.)
Assertion
Ref Expression
iotaexel  |-  ( ( A  e.  V  /\  A. x ( ph  ->  x  e.  A ) )  ->  ( iota x ph )  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem iotaexel
StepHypRef Expression
1 df-riota 5953 . . 3  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
2 pm4.71r 390 . . . . . 6  |-  ( (
ph  ->  x  e.  A
)  <->  ( ph  <->  ( x  e.  A  /\  ph )
) )
32albii 1516 . . . . 5  |-  ( A. x ( ph  ->  x  e.  A )  <->  A. x
( ph  <->  ( x  e.  A  /\  ph )
) )
4 iotabi 5287 . . . . 5  |-  ( A. x ( ph  <->  ( x  e.  A  /\  ph )
)  ->  ( iota x ph )  =  ( iota x ( x  e.  A  /\  ph ) ) )
53, 4sylbi 121 . . . 4  |-  ( A. x ( ph  ->  x  e.  A )  -> 
( iota x ph )  =  ( iota x
( x  e.  A  /\  ph ) ) )
65adantl 277 . . 3  |-  ( ( A  e.  V  /\  A. x ( ph  ->  x  e.  A ) )  ->  ( iota x ph )  =  ( iota x ( x  e.  A  /\  ph )
) )
71, 6eqtr4id 2281 . 2  |-  ( ( A  e.  V  /\  A. x ( ph  ->  x  e.  A ) )  ->  ( iota_ x  e.  A  ph )  =  ( iota x ph ) )
8 riotaexg 5957 . . 3  |-  ( A  e.  V  ->  ( iota_ x  e.  A  ph )  e.  _V )
98adantr 276 . 2  |-  ( ( A  e.  V  /\  A. x ( ph  ->  x  e.  A ) )  ->  ( iota_ x  e.  A  ph )  e. 
_V )
107, 9eqeltrrd 2307 1  |-  ( ( A  e.  V  /\  A. x ( ph  ->  x  e.  A ) )  ->  ( iota x ph )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395    e. wcel 2200   _Vcvv 2799   iotacio 5275   iota_crio 5952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-iota 5277  df-riota 5953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator