ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaexel Unicode version

Theorem iotaexel 5904
Description: Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.)
Assertion
Ref Expression
iotaexel  |-  ( ( A  e.  V  /\  A. x ( ph  ->  x  e.  A ) )  ->  ( iota x ph )  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem iotaexel
StepHypRef Expression
1 df-riota 5899 . . 3  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
2 pm4.71r 390 . . . . . 6  |-  ( (
ph  ->  x  e.  A
)  <->  ( ph  <->  ( x  e.  A  /\  ph )
) )
32albii 1493 . . . . 5  |-  ( A. x ( ph  ->  x  e.  A )  <->  A. x
( ph  <->  ( x  e.  A  /\  ph )
) )
4 iotabi 5241 . . . . 5  |-  ( A. x ( ph  <->  ( x  e.  A  /\  ph )
)  ->  ( iota x ph )  =  ( iota x ( x  e.  A  /\  ph ) ) )
53, 4sylbi 121 . . . 4  |-  ( A. x ( ph  ->  x  e.  A )  -> 
( iota x ph )  =  ( iota x
( x  e.  A  /\  ph ) ) )
65adantl 277 . . 3  |-  ( ( A  e.  V  /\  A. x ( ph  ->  x  e.  A ) )  ->  ( iota x ph )  =  ( iota x ( x  e.  A  /\  ph )
) )
71, 6eqtr4id 2257 . 2  |-  ( ( A  e.  V  /\  A. x ( ph  ->  x  e.  A ) )  ->  ( iota_ x  e.  A  ph )  =  ( iota x ph ) )
8 riotaexg 5903 . . 3  |-  ( A  e.  V  ->  ( iota_ x  e.  A  ph )  e.  _V )
98adantr 276 . 2  |-  ( ( A  e.  V  /\  A. x ( ph  ->  x  e.  A ) )  ->  ( iota_ x  e.  A  ph )  e. 
_V )
107, 9eqeltrrd 2283 1  |-  ( ( A  e.  V  /\  A. x ( ph  ->  x  e.  A ) )  ->  ( iota x ph )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2176   _Vcvv 2772   iotacio 5230   iota_crio 5898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-iota 5232  df-riota 5899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator