ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaexel GIF version

Theorem iotaexel 5917
Description: Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.)
Assertion
Ref Expression
iotaexel ((𝐴𝑉 ∧ ∀𝑥(𝜑𝑥𝐴)) → (℩𝑥𝜑) ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem iotaexel
StepHypRef Expression
1 df-riota 5912 . . 3 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
2 pm4.71r 390 . . . . . 6 ((𝜑𝑥𝐴) ↔ (𝜑 ↔ (𝑥𝐴𝜑)))
32albii 1494 . . . . 5 (∀𝑥(𝜑𝑥𝐴) ↔ ∀𝑥(𝜑 ↔ (𝑥𝐴𝜑)))
4 iotabi 5250 . . . . 5 (∀𝑥(𝜑 ↔ (𝑥𝐴𝜑)) → (℩𝑥𝜑) = (℩𝑥(𝑥𝐴𝜑)))
53, 4sylbi 121 . . . 4 (∀𝑥(𝜑𝑥𝐴) → (℩𝑥𝜑) = (℩𝑥(𝑥𝐴𝜑)))
65adantl 277 . . 3 ((𝐴𝑉 ∧ ∀𝑥(𝜑𝑥𝐴)) → (℩𝑥𝜑) = (℩𝑥(𝑥𝐴𝜑)))
71, 6eqtr4id 2258 . 2 ((𝐴𝑉 ∧ ∀𝑥(𝜑𝑥𝐴)) → (𝑥𝐴 𝜑) = (℩𝑥𝜑))
8 riotaexg 5916 . . 3 (𝐴𝑉 → (𝑥𝐴 𝜑) ∈ V)
98adantr 276 . 2 ((𝐴𝑉 ∧ ∀𝑥(𝜑𝑥𝐴)) → (𝑥𝐴 𝜑) ∈ V)
107, 9eqeltrrd 2284 1 ((𝐴𝑉 ∧ ∀𝑥(𝜑𝑥𝐴)) → (℩𝑥𝜑) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wcel 2177  Vcvv 2773  cio 5239  crio 5911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-iota 5241  df-riota 5912
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator