| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iotaexel | GIF version | ||
| Description: Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.) | 
| Ref | Expression | 
|---|---|
| iotaexel | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) → (℩𝑥𝜑) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-riota 5877 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | pm4.71r 390 | . . . . . 6 ⊢ ((𝜑 → 𝑥 ∈ 𝐴) ↔ (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 3 | 2 | albii 1484 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | 
| 4 | iotabi 5228 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) → (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 5 | 3, 4 | sylbi 121 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) → (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | 
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) → (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | 
| 7 | 1, 6 | eqtr4id 2248 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥𝜑)) | 
| 8 | riotaexg 5881 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜑) ∈ V) | |
| 9 | 8 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) → (℩𝑥 ∈ 𝐴 𝜑) ∈ V) | 
| 10 | 7, 9 | eqeltrrd 2274 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) → (℩𝑥𝜑) ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ℩cio 5217 ℩crio 5876 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 df-riota 5877 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |