| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotaexel | GIF version | ||
| Description: Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.) |
| Ref | Expression |
|---|---|
| iotaexel | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) → (℩𝑥𝜑) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 5953 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | pm4.71r 390 | . . . . . 6 ⊢ ((𝜑 → 𝑥 ∈ 𝐴) ↔ (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 3 | 2 | albii 1516 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 4 | iotabi 5287 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) → (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 5 | 3, 4 | sylbi 121 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) → (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) → (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 7 | 1, 6 | eqtr4id 2281 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥𝜑)) |
| 8 | riotaexg 5957 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜑) ∈ V) | |
| 9 | 8 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) → (℩𝑥 ∈ 𝐴 𝜑) ∈ V) |
| 10 | 7, 9 | eqeltrrd 2307 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) → (℩𝑥𝜑) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ℩cio 5275 ℩crio 5952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-iota 5277 df-riota 5953 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |