ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaexel GIF version

Theorem iotaexel 5878
Description: Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.)
Assertion
Ref Expression
iotaexel ((𝐴𝑉 ∧ ∀𝑥(𝜑𝑥𝐴)) → (℩𝑥𝜑) ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem iotaexel
StepHypRef Expression
1 df-riota 5873 . . 3 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
2 pm4.71r 390 . . . . . 6 ((𝜑𝑥𝐴) ↔ (𝜑 ↔ (𝑥𝐴𝜑)))
32albii 1481 . . . . 5 (∀𝑥(𝜑𝑥𝐴) ↔ ∀𝑥(𝜑 ↔ (𝑥𝐴𝜑)))
4 iotabi 5224 . . . . 5 (∀𝑥(𝜑 ↔ (𝑥𝐴𝜑)) → (℩𝑥𝜑) = (℩𝑥(𝑥𝐴𝜑)))
53, 4sylbi 121 . . . 4 (∀𝑥(𝜑𝑥𝐴) → (℩𝑥𝜑) = (℩𝑥(𝑥𝐴𝜑)))
65adantl 277 . . 3 ((𝐴𝑉 ∧ ∀𝑥(𝜑𝑥𝐴)) → (℩𝑥𝜑) = (℩𝑥(𝑥𝐴𝜑)))
71, 6eqtr4id 2245 . 2 ((𝐴𝑉 ∧ ∀𝑥(𝜑𝑥𝐴)) → (𝑥𝐴 𝜑) = (℩𝑥𝜑))
8 riotaexg 5877 . . 3 (𝐴𝑉 → (𝑥𝐴 𝜑) ∈ V)
98adantr 276 . 2 ((𝐴𝑉 ∧ ∀𝑥(𝜑𝑥𝐴)) → (𝑥𝐴 𝜑) ∈ V)
107, 9eqeltrrd 2271 1 ((𝐴𝑉 ∧ ∀𝑥(𝜑𝑥𝐴)) → (℩𝑥𝜑) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wcel 2164  Vcvv 2760  cio 5213  crio 5872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-iota 5215  df-riota 5873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator