ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isomnimap Unicode version

Theorem isomnimap 7260
Description: The predicate of being omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 13-Jul-2022.)
Assertion
Ref Expression
isomnimap  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) ) )
Distinct variable groups:    A, f, x   
f, V
Allowed substitution hint:    V( x)

Proof of Theorem isomnimap
StepHypRef Expression
1 isomni 7259 . . 3  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
2 2onn 6625 . . . . . 6  |-  2o  e.  om
3 elmapg 6766 . . . . . 6  |-  ( ( 2o  e.  om  /\  A  e.  V )  ->  ( f  e.  ( 2o  ^m  A )  <-> 
f : A --> 2o ) )
42, 3mpan 424 . . . . 5  |-  ( A  e.  V  ->  (
f  e.  ( 2o 
^m  A )  <->  f : A
--> 2o ) )
54imbi1d 231 . . . 4  |-  ( A  e.  V  ->  (
( f  e.  ( 2o  ^m  A )  ->  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) )  <->  ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
65albidv 1848 . . 3  |-  ( A  e.  V  ->  ( A. f ( f  e.  ( 2o  ^m  A
)  ->  ( E. x  e.  A  (
f `  x )  =  (/)  \/  A. x  e.  A  ( f `  x )  =  1o ) )  <->  A. f
( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) ) ) )
71, 6bitr4d 191 . 2  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f ( f  e.  ( 2o  ^m  A )  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
8 df-ral 2490 . 2  |-  ( A. f  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( f `  x )  =  (/)  \/  A. x  e.  A  ( f `  x )  =  1o )  <->  A. f ( f  e.  ( 2o  ^m  A )  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) )
97, 8bitr4di 198 1  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 710   A.wal 1371    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486   (/)c0 3464   omcom 4651   -->wf 5281   ` cfv 5285  (class class class)co 5962   1oc1o 6513   2oc2o 6514    ^m cmap 6753  Omnicomni 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-id 4353  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1o 6520  df-2o 6521  df-map 6755  df-omni 7258
This theorem is referenced by:  enomnilem  7261  fodjuomnilemres  7271  nninfomnilem  16127  isomninnlem  16141
  Copyright terms: Public domain W3C validator