| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issetid | GIF version | ||
| Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| issetid | ⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ididg 4874 | . 2 ⊢ (𝐴 ∈ V → 𝐴 I 𝐴) | |
| 2 | reli 4850 | . . 3 ⊢ Rel I | |
| 3 | 2 | brrelex1i 4761 | . 2 ⊢ (𝐴 I 𝐴 → 𝐴 ∈ V) |
| 4 | 1, 3 | impbii 126 | 1 ⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2200 Vcvv 2799 class class class wbr 4082 I cid 4378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |