![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > issetid | GIF version |
Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
issetid | ⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ididg 4604 | . 2 ⊢ (𝐴 ∈ V → 𝐴 I 𝐴) | |
2 | reli 4580 | . . 3 ⊢ Rel I | |
3 | 2 | brrelex1i 4496 | . 2 ⊢ (𝐴 I 𝐴 → 𝐴 ∈ V) |
4 | 1, 3 | impbii 125 | 1 ⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 1439 Vcvv 2622 class class class wbr 3853 I cid 4126 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-pow 4017 ax-pr 4047 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2624 df-un 3006 df-in 3008 df-ss 3015 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-br 3854 df-opab 3908 df-id 4131 df-xp 4460 df-rel 4461 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |