ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reli Unicode version

Theorem reli 4825
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
reli  |-  Rel  _I

Proof of Theorem reli
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 4358 . 2  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
21relopabi 4821 1  |-  Rel  _I
Colors of variables: wff set class
Syntax hints:    = wceq 1373    _I cid 4353   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700
This theorem is referenced by:  ideqg  4847  issetid  4850  iss  5024  intirr  5088  funi  5322  f1ovi  5584  idssen  6891
  Copyright terms: Public domain W3C validator