ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reli Unicode version

Theorem reli 4738
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
reli  |-  Rel  _I

Proof of Theorem reli
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 4276 . 2  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
21relopabi 4735 1  |-  Rel  _I
Colors of variables: wff set class
Syntax hints:    = wceq 1348    _I cid 4271   Rel wrel 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616
This theorem is referenced by:  ideqg  4760  issetid  4763  iss  4935  intirr  4995  funi  5228  f1ovi  5479  idssen  6752
  Copyright terms: Public domain W3C validator