![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunpwss | GIF version |
Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
iunpwss | ⊢ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ⊆ 𝒫 ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssiun 3954 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥) | |
2 | eliun 3916 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) | |
3 | vex 2763 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 3 | elpw 3607 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥) |
5 | 4 | rexbii 2501 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
6 | 2, 5 | bitri 184 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
7 | 3 | elpw 3607 | . . . 4 ⊢ (𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴) |
8 | uniiun 3966 | . . . . 5 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
9 | 8 | sseq2i 3206 | . . . 4 ⊢ (𝑦 ⊆ ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥) |
10 | 7, 9 | bitri 184 | . . 3 ⊢ (𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥) |
11 | 1, 6, 10 | 3imtr4i 201 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → 𝑦 ∈ 𝒫 ∪ 𝐴) |
12 | 11 | ssriv 3183 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ⊆ 𝒫 ∪ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ∃wrex 2473 ⊆ wss 3153 𝒫 cpw 3601 ∪ cuni 3835 ∪ ciun 3912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 df-uni 3836 df-iun 3914 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |