| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunpwss | GIF version | ||
| Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| iunpwss | ⊢ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ⊆ 𝒫 ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssiun 3983 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥) | |
| 2 | eliun 3945 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) | |
| 3 | vex 2779 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 3 | elpw 3632 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥) |
| 5 | 4 | rexbii 2515 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
| 6 | 2, 5 | bitri 184 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
| 7 | 3 | elpw 3632 | . . . 4 ⊢ (𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴) |
| 8 | uniiun 3995 | . . . . 5 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 9 | 8 | sseq2i 3228 | . . . 4 ⊢ (𝑦 ⊆ ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥) |
| 10 | 7, 9 | bitri 184 | . . 3 ⊢ (𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥) |
| 11 | 1, 6, 10 | 3imtr4i 201 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → 𝑦 ∈ 𝒫 ∪ 𝐴) |
| 12 | 11 | ssriv 3205 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ⊆ 𝒫 ∪ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 ∃wrex 2487 ⊆ wss 3174 𝒫 cpw 3626 ∪ cuni 3864 ∪ ciun 3941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-uni 3865 df-iun 3943 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |