ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunpwss GIF version

Theorem iunpwss 4033
Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
iunpwss 𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunpwss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssiun 3983 . . 3 (∃𝑥𝐴 𝑦𝑥𝑦 𝑥𝐴 𝑥)
2 eliun 3945 . . . 4 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
3 vex 2779 . . . . . 6 𝑦 ∈ V
43elpw 3632 . . . . 5 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
54rexbii 2515 . . . 4 (∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
62, 5bitri 184 . . 3 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
73elpw 3632 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
8 uniiun 3995 . . . . 5 𝐴 = 𝑥𝐴 𝑥
98sseq2i 3228 . . . 4 (𝑦 𝐴𝑦 𝑥𝐴 𝑥)
107, 9bitri 184 . . 3 (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝑥)
111, 6, 103imtr4i 201 . 2 (𝑦 𝑥𝐴 𝒫 𝑥𝑦 ∈ 𝒫 𝐴)
1211ssriv 3205 1 𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2178  wrex 2487  wss 3174  𝒫 cpw 3626   cuni 3864   ciun 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628  df-uni 3865  df-iun 3943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator