ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunpwss GIF version

Theorem iunpwss 4019
Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
iunpwss 𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunpwss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssiun 3969 . . 3 (∃𝑥𝐴 𝑦𝑥𝑦 𝑥𝐴 𝑥)
2 eliun 3931 . . . 4 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
3 vex 2775 . . . . . 6 𝑦 ∈ V
43elpw 3622 . . . . 5 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
54rexbii 2513 . . . 4 (∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
62, 5bitri 184 . . 3 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
73elpw 3622 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
8 uniiun 3981 . . . . 5 𝐴 = 𝑥𝐴 𝑥
98sseq2i 3220 . . . 4 (𝑦 𝐴𝑦 𝑥𝐴 𝑥)
107, 9bitri 184 . . 3 (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝑥)
111, 6, 103imtr4i 201 . 2 (𝑦 𝑥𝐴 𝒫 𝑥𝑦 ∈ 𝒫 𝐴)
1211ssriv 3197 1 𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2176  wrex 2485  wss 3166  𝒫 cpw 3616   cuni 3850   ciun 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-uni 3851  df-iun 3929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator