| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctir | Unicode version | ||
| Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 |
|
| jctil.2 |
|
| Ref | Expression |
|---|---|
| jctir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.1 |
. 2
| |
| 2 | jctil.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctr 315 equvini 1772 funtp 5312 foimacnv 5525 respreima 5693 fpr 5747 dmtpos 6323 ixpsnf1o 6804 ssdomg 6846 exmidfodomrlemim 7280 archnqq 7501 recexgt0sr 7857 ige2m2fzo 10291 climeu 11478 algcvgblem 12242 qredeu 12290 qnumdencoprm 12386 qeqnumdivden 12387 eltg3i 14376 topbas 14387 neipsm 14474 lmbrf 14535 2lgslem1a 15413 exmidsbthrlem 15753 |
| Copyright terms: Public domain | W3C validator |