ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir Unicode version

Theorem jctir 313
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1  |-  ( ph  ->  ps )
jctil.2  |-  ch
Assertion
Ref Expression
jctir  |-  ( ph  ->  ( ps  /\  ch ) )

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2  |-  ( ph  ->  ps )
2 jctil.2 . . 3  |-  ch
32a1i 9 . 2  |-  ( ph  ->  ch )
41, 3jca 306 1  |-  ( ph  ->  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  jctr  315  equvini  1804  funtp  5374  foimacnv  5590  respreima  5763  fpr  5821  dmtpos  6402  ixpsnf1o  6883  ssdomg  6930  exmidfodomrlemim  7379  archnqq  7604  recexgt0sr  7960  ige2m2fzo  10404  swrdlsw  11201  climeu  11807  algcvgblem  12571  qredeu  12619  qnumdencoprm  12715  qeqnumdivden  12716  eltg3i  14730  topbas  14741  neipsm  14828  lmbrf  14889  2lgslem1a  15767  usgredg2v  16022  exmidsbthrlem  16390
  Copyright terms: Public domain W3C validator