| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctir | Unicode version | ||
| Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 |
|
| jctil.2 |
|
| Ref | Expression |
|---|---|
| jctir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.1 |
. 2
| |
| 2 | jctil.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctr 315 equvini 1781 funtp 5327 foimacnv 5540 respreima 5708 fpr 5766 dmtpos 6342 ixpsnf1o 6823 ssdomg 6870 exmidfodomrlemim 7309 archnqq 7530 recexgt0sr 7886 ige2m2fzo 10327 swrdlsw 11122 climeu 11607 algcvgblem 12371 qredeu 12419 qnumdencoprm 12515 qeqnumdivden 12516 eltg3i 14528 topbas 14539 neipsm 14626 lmbrf 14687 2lgslem1a 15565 exmidsbthrlem 15965 |
| Copyright terms: Public domain | W3C validator |