| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctir | Unicode version | ||
| Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 |
|
| jctil.2 |
|
| Ref | Expression |
|---|---|
| jctir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.1 |
. 2
| |
| 2 | jctil.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctr 315 equvini 1781 funtp 5328 foimacnv 5542 respreima 5710 fpr 5768 dmtpos 6344 ixpsnf1o 6825 ssdomg 6872 exmidfodomrlemim 7311 archnqq 7532 recexgt0sr 7888 ige2m2fzo 10329 swrdlsw 11125 climeu 11640 algcvgblem 12404 qredeu 12452 qnumdencoprm 12548 qeqnumdivden 12549 eltg3i 14561 topbas 14572 neipsm 14659 lmbrf 14720 2lgslem1a 15598 exmidsbthrlem 15998 |
| Copyright terms: Public domain | W3C validator |