| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > jctir | Unicode version | ||
| Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) | 
| Ref | Expression | 
|---|---|
| jctil.1 | 
 | 
| jctil.2 | 
 | 
| Ref | Expression | 
|---|---|
| jctir | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | jctil.1 | 
. 2
 | |
| 2 | jctil.2 | 
. . 3
 | |
| 3 | 2 | a1i 9 | 
. 2
 | 
| 4 | 1, 3 | jca 306 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 | 
| This theorem is referenced by: jctr 315 equvini 1772 funtp 5311 foimacnv 5522 respreima 5690 fpr 5744 dmtpos 6314 ixpsnf1o 6795 ssdomg 6837 exmidfodomrlemim 7268 archnqq 7484 recexgt0sr 7840 ige2m2fzo 10274 climeu 11461 algcvgblem 12217 qredeu 12265 qnumdencoprm 12361 qeqnumdivden 12362 eltg3i 14292 topbas 14303 neipsm 14390 lmbrf 14451 2lgslem1a 15329 exmidsbthrlem 15666 | 
| Copyright terms: Public domain | W3C validator |