ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir Unicode version

Theorem jctir 313
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1  |-  ( ph  ->  ps )
jctil.2  |-  ch
Assertion
Ref Expression
jctir  |-  ( ph  ->  ( ps  /\  ch ) )

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2  |-  ( ph  ->  ps )
2 jctil.2 . . 3  |-  ch
32a1i 9 . 2  |-  ( ph  ->  ch )
41, 3jca 306 1  |-  ( ph  ->  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  jctr  315  equvini  1782  funtp  5346  foimacnv  5562  respreima  5731  fpr  5789  dmtpos  6365  ixpsnf1o  6846  ssdomg  6893  exmidfodomrlemim  7340  archnqq  7565  recexgt0sr  7921  ige2m2fzo  10364  swrdlsw  11160  climeu  11722  algcvgblem  12486  qredeu  12534  qnumdencoprm  12630  qeqnumdivden  12631  eltg3i  14643  topbas  14654  neipsm  14741  lmbrf  14802  2lgslem1a  15680  exmidsbthrlem  16163
  Copyright terms: Public domain W3C validator