| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctir | Unicode version | ||
| Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 |
|
| jctil.2 |
|
| Ref | Expression |
|---|---|
| jctir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.1 |
. 2
| |
| 2 | jctil.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctr 315 equvini 1782 funtp 5346 foimacnv 5562 respreima 5731 fpr 5789 dmtpos 6365 ixpsnf1o 6846 ssdomg 6893 exmidfodomrlemim 7340 archnqq 7565 recexgt0sr 7921 ige2m2fzo 10364 swrdlsw 11160 climeu 11722 algcvgblem 12486 qredeu 12534 qnumdencoprm 12630 qeqnumdivden 12631 eltg3i 14643 topbas 14654 neipsm 14741 lmbrf 14802 2lgslem1a 15680 exmidsbthrlem 16163 |
| Copyright terms: Public domain | W3C validator |