ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir Unicode version

Theorem jctir 313
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1  |-  ( ph  ->  ps )
jctil.2  |-  ch
Assertion
Ref Expression
jctir  |-  ( ph  ->  ( ps  /\  ch ) )

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2  |-  ( ph  ->  ps )
2 jctil.2 . . 3  |-  ch
32a1i 9 . 2  |-  ( ph  ->  ch )
41, 3jca 306 1  |-  ( ph  ->  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  jctr  315  equvini  1781  funtp  5328  foimacnv  5542  respreima  5710  fpr  5768  dmtpos  6344  ixpsnf1o  6825  ssdomg  6872  exmidfodomrlemim  7311  archnqq  7532  recexgt0sr  7888  ige2m2fzo  10329  swrdlsw  11125  climeu  11640  algcvgblem  12404  qredeu  12452  qnumdencoprm  12548  qeqnumdivden  12549  eltg3i  14561  topbas  14572  neipsm  14659  lmbrf  14720  2lgslem1a  15598  exmidsbthrlem  15998
  Copyright terms: Public domain W3C validator