ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir Unicode version

Theorem jctir 313
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1  |-  ( ph  ->  ps )
jctil.2  |-  ch
Assertion
Ref Expression
jctir  |-  ( ph  ->  ( ps  /\  ch ) )

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2  |-  ( ph  ->  ps )
2 jctil.2 . . 3  |-  ch
32a1i 9 . 2  |-  ( ph  ->  ch )
41, 3jca 306 1  |-  ( ph  ->  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  jctr  315  equvini  1769  funtp  5307  foimacnv  5518  respreima  5686  fpr  5740  dmtpos  6309  ixpsnf1o  6790  ssdomg  6832  exmidfodomrlemim  7261  archnqq  7477  recexgt0sr  7833  ige2m2fzo  10265  climeu  11439  algcvgblem  12187  qredeu  12235  qnumdencoprm  12331  qeqnumdivden  12332  eltg3i  14224  topbas  14235  neipsm  14322  lmbrf  14383  exmidsbthrlem  15512
  Copyright terms: Public domain W3C validator