| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctir | Unicode version | ||
| Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 |
|
| jctil.2 |
|
| Ref | Expression |
|---|---|
| jctir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.1 |
. 2
| |
| 2 | jctil.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctr 315 equvini 1804 funtp 5374 foimacnv 5590 respreima 5763 fpr 5821 dmtpos 6402 ixpsnf1o 6883 ssdomg 6930 exmidfodomrlemim 7379 archnqq 7604 recexgt0sr 7960 ige2m2fzo 10404 swrdlsw 11201 climeu 11807 algcvgblem 12571 qredeu 12619 qnumdencoprm 12715 qeqnumdivden 12716 eltg3i 14730 topbas 14741 neipsm 14828 lmbrf 14889 2lgslem1a 15767 usgredg2v 16022 exmidsbthrlem 16390 |
| Copyright terms: Public domain | W3C validator |