Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmtpos | Unicode version |
Description: The domain of tpos when is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
dmtpos | tpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4632 | . . . . 5 | |
2 | ssel 3136 | . . . . 5 | |
3 | 1, 2 | mtoi 654 | . . . 4 |
4 | df-rel 4611 | . . . 4 | |
5 | reldmtpos 6221 | . . . 4 tpos | |
6 | 3, 4, 5 | 3imtr4i 200 | . . 3 tpos |
7 | relcnv 4982 | . . 3 | |
8 | 6, 7 | jctir 311 | . 2 tpos |
9 | vex 2729 | . . . . . . 7 | |
10 | vex 2729 | . . . . . . 7 | |
11 | vex 2729 | . . . . . . 7 | |
12 | brtposg 6222 | . . . . . . 7 tpos | |
13 | 9, 10, 11, 12 | mp3an 1327 | . . . . . 6 tpos |
14 | 13 | a1i 9 | . . . . 5 tpos |
15 | 14 | exbidv 1813 | . . . 4 tpos |
16 | 9, 10 | opex 4207 | . . . . 5 |
17 | 16 | eldm 4801 | . . . 4 tpos tpos |
18 | 9, 10 | opelcnv 4786 | . . . . 5 |
19 | 10, 9 | opex 4207 | . . . . . 6 |
20 | 19 | eldm 4801 | . . . . 5 |
21 | 18, 20 | bitri 183 | . . . 4 |
22 | 15, 17, 21 | 3bitr4g 222 | . . 3 tpos |
23 | 22 | eqrelrdv2 4703 | . 2 tpos tpos |
24 | 8, 23 | mpancom 419 | 1 tpos |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 wss 3116 c0 3409 cop 3579 class class class wbr 3982 cxp 4602 ccnv 4603 cdm 4604 wrel 4609 tpos ctpos 6212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-tpos 6213 |
This theorem is referenced by: rntpos 6225 dftpos2 6229 dftpos3 6230 tposfn2 6234 |
Copyright terms: Public domain | W3C validator |