ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmtpos Unicode version

Theorem dmtpos 6107
Description: The domain of tpos  F when  dom  F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dmtpos  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )

Proof of Theorem dmtpos
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nelxp 4527 . . . . 5  |-  -.  (/)  e.  ( _V  X.  _V )
2 ssel 3057 . . . . 5  |-  ( dom 
F  C_  ( _V  X.  _V )  ->  ( (/) 
e.  dom  F  ->  (/)  e.  ( _V  X.  _V ) ) )
31, 2mtoi 636 . . . 4  |-  ( dom 
F  C_  ( _V  X.  _V )  ->  -.  (/) 
e.  dom  F )
4 df-rel 4506 . . . 4  |-  ( Rel 
dom  F  <->  dom  F  C_  ( _V  X.  _V ) )
5 reldmtpos 6104 . . . 4  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )
63, 4, 53imtr4i 200 . . 3  |-  ( Rel 
dom  F  ->  Rel  dom tpos  F )
7 relcnv 4875 . . 3  |-  Rel  `' dom  F
86, 7jctir 309 . 2  |-  ( Rel 
dom  F  ->  ( Rel 
dom tpos  F  /\  Rel  `' dom  F ) )
9 vex 2660 . . . . . . 7  |-  x  e. 
_V
10 vex 2660 . . . . . . 7  |-  y  e. 
_V
11 vex 2660 . . . . . . 7  |-  z  e. 
_V
12 brtposg 6105 . . . . . . 7  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  ( <. x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
139, 10, 11, 12mp3an 1298 . . . . . 6  |-  ( <.
x ,  y >.tpos  F z  <->  <. y ,  x >. F z )
1413a1i 9 . . . . 5  |-  ( Rel 
dom  F  ->  ( <.
x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
1514exbidv 1779 . . . 4  |-  ( Rel 
dom  F  ->  ( E. z <. x ,  y
>.tpos  F z  <->  E. z <. y ,  x >. F z ) )
169, 10opex 4111 . . . . 5  |-  <. x ,  y >.  e.  _V
1716eldm 4696 . . . 4  |-  ( <.
x ,  y >.  e.  dom tpos  F  <->  E. z <. x ,  y >.tpos  F z )
189, 10opelcnv 4681 . . . . 5  |-  ( <.
x ,  y >.  e.  `' dom  F  <->  <. y ,  x >.  e.  dom  F )
1910, 9opex 4111 . . . . . 6  |-  <. y ,  x >.  e.  _V
2019eldm 4696 . . . . 5  |-  ( <.
y ,  x >.  e. 
dom  F  <->  E. z <. y ,  x >. F z )
2118, 20bitri 183 . . . 4  |-  ( <.
x ,  y >.  e.  `' dom  F  <->  E. z <. y ,  x >. F z )
2215, 17, 213bitr4g 222 . . 3  |-  ( Rel 
dom  F  ->  ( <.
x ,  y >.  e.  dom tpos  F  <->  <. x ,  y
>.  e.  `' dom  F
) )
2322eqrelrdv2 4598 . 2  |-  ( ( ( Rel  dom tpos  F  /\  Rel  `' dom  F )  /\  Rel  dom  F )  ->  dom tpos  F  =  `' dom  F )
248, 23mpancom 416 1  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314   E.wex 1451    e. wcel 1463   _Vcvv 2657    C_ wss 3037   (/)c0 3329   <.cop 3496   class class class wbr 3895    X. cxp 4497   `'ccnv 4498   dom cdm 4499   Rel wrel 4504  tpos ctpos 6095
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-fv 5089  df-tpos 6096
This theorem is referenced by:  rntpos  6108  dftpos2  6112  dftpos3  6113  tposfn2  6117
  Copyright terms: Public domain W3C validator