Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmtpos | Unicode version |
Description: The domain of tpos when is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
dmtpos | tpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4639 | . . . . 5 | |
2 | ssel 3141 | . . . . 5 | |
3 | 1, 2 | mtoi 659 | . . . 4 |
4 | df-rel 4618 | . . . 4 | |
5 | reldmtpos 6232 | . . . 4 tpos | |
6 | 3, 4, 5 | 3imtr4i 200 | . . 3 tpos |
7 | relcnv 4989 | . . 3 | |
8 | 6, 7 | jctir 311 | . 2 tpos |
9 | vex 2733 | . . . . . . 7 | |
10 | vex 2733 | . . . . . . 7 | |
11 | vex 2733 | . . . . . . 7 | |
12 | brtposg 6233 | . . . . . . 7 tpos | |
13 | 9, 10, 11, 12 | mp3an 1332 | . . . . . 6 tpos |
14 | 13 | a1i 9 | . . . . 5 tpos |
15 | 14 | exbidv 1818 | . . . 4 tpos |
16 | 9, 10 | opex 4214 | . . . . 5 |
17 | 16 | eldm 4808 | . . . 4 tpos tpos |
18 | 9, 10 | opelcnv 4793 | . . . . 5 |
19 | 10, 9 | opex 4214 | . . . . . 6 |
20 | 19 | eldm 4808 | . . . . 5 |
21 | 18, 20 | bitri 183 | . . . 4 |
22 | 15, 17, 21 | 3bitr4g 222 | . . 3 tpos |
23 | 22 | eqrelrdv2 4710 | . 2 tpos tpos |
24 | 8, 23 | mpancom 420 | 1 tpos |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 wss 3121 c0 3414 cop 3586 class class class wbr 3989 cxp 4609 ccnv 4610 cdm 4611 wrel 4616 tpos ctpos 6223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-tpos 6224 |
This theorem is referenced by: rntpos 6236 dftpos2 6240 dftpos3 6241 tposfn2 6245 |
Copyright terms: Public domain | W3C validator |