ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmtpos Unicode version

Theorem dmtpos 6365
Description: The domain of tpos  F when  dom  F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dmtpos  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )

Proof of Theorem dmtpos
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nelxp 4721 . . . . 5  |-  -.  (/)  e.  ( _V  X.  _V )
2 ssel 3195 . . . . 5  |-  ( dom 
F  C_  ( _V  X.  _V )  ->  ( (/) 
e.  dom  F  ->  (/)  e.  ( _V  X.  _V ) ) )
31, 2mtoi 666 . . . 4  |-  ( dom 
F  C_  ( _V  X.  _V )  ->  -.  (/) 
e.  dom  F )
4 df-rel 4700 . . . 4  |-  ( Rel 
dom  F  <->  dom  F  C_  ( _V  X.  _V ) )
5 reldmtpos 6362 . . . 4  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )
63, 4, 53imtr4i 201 . . 3  |-  ( Rel 
dom  F  ->  Rel  dom tpos  F )
7 relcnv 5079 . . 3  |-  Rel  `' dom  F
86, 7jctir 313 . 2  |-  ( Rel 
dom  F  ->  ( Rel 
dom tpos  F  /\  Rel  `' dom  F ) )
9 vex 2779 . . . . . . 7  |-  x  e. 
_V
10 vex 2779 . . . . . . 7  |-  y  e. 
_V
11 vex 2779 . . . . . . 7  |-  z  e. 
_V
12 brtposg 6363 . . . . . . 7  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  ( <. x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
139, 10, 11, 12mp3an 1350 . . . . . 6  |-  ( <.
x ,  y >.tpos  F z  <->  <. y ,  x >. F z )
1413a1i 9 . . . . 5  |-  ( Rel 
dom  F  ->  ( <.
x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
1514exbidv 1849 . . . 4  |-  ( Rel 
dom  F  ->  ( E. z <. x ,  y
>.tpos  F z  <->  E. z <. y ,  x >. F z ) )
169, 10opex 4291 . . . . 5  |-  <. x ,  y >.  e.  _V
1716eldm 4894 . . . 4  |-  ( <.
x ,  y >.  e.  dom tpos  F  <->  E. z <. x ,  y >.tpos  F z )
189, 10opelcnv 4878 . . . . 5  |-  ( <.
x ,  y >.  e.  `' dom  F  <->  <. y ,  x >.  e.  dom  F )
1910, 9opex 4291 . . . . . 6  |-  <. y ,  x >.  e.  _V
2019eldm 4894 . . . . 5  |-  ( <.
y ,  x >.  e. 
dom  F  <->  E. z <. y ,  x >. F z )
2118, 20bitri 184 . . . 4  |-  ( <.
x ,  y >.  e.  `' dom  F  <->  E. z <. y ,  x >. F z )
2215, 17, 213bitr4g 223 . . 3  |-  ( Rel 
dom  F  ->  ( <.
x ,  y >.  e.  dom tpos  F  <->  <. x ,  y
>.  e.  `' dom  F
) )
2322eqrelrdv2 4792 . 2  |-  ( ( ( Rel  dom tpos  F  /\  Rel  `' dom  F )  /\  Rel  dom  F )  ->  dom tpos  F  =  `' dom  F )
248, 23mpancom 422 1  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776    C_ wss 3174   (/)c0 3468   <.cop 3646   class class class wbr 4059    X. cxp 4691   `'ccnv 4692   dom cdm 4693   Rel wrel 4698  tpos ctpos 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-tpos 6354
This theorem is referenced by:  rntpos  6366  dftpos2  6370  dftpos3  6371  tposfn2  6375
  Copyright terms: Public domain W3C validator