ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmbrf Unicode version

Theorem lmbrf 13295
Description: Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary upper set of integers. This version of lmbr2 13294 presupposes that  F is a function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmbr2.4  |-  Z  =  ( ZZ>= `  M )
lmbr2.5  |-  ( ph  ->  M  e.  ZZ )
lmbrf.6  |-  ( ph  ->  F : Z --> X )
lmbrf.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
Assertion
Ref Expression
lmbrf  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
Distinct variable groups:    j, k, u, F    j, J, k, u    ph, j, k, u   
j, Z, k, u   
j, M    P, j,
k, u    j, X, k, u
Allowed substitution hints:    A( u, j, k)    M( u, k)

Proof of Theorem lmbrf
StepHypRef Expression
1 lmbr.2 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 lmbr2.4 . . 3  |-  Z  =  ( ZZ>= `  M )
3 lmbr2.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
41, 2, 3lmbr2 13294 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
5 3anass 982 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) )
62uztrn2 9518 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
7 lmbrf.7 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
87eleq1d 2244 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  A  e.  u ) )
9 lmbrf.6 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : Z --> X )
109fdmd 5364 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  F  =  Z )
1110eleq2d 2245 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  dom  F  <-> 
k  e.  Z ) )
1211biimpar 297 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  dom  F )
1312biantrurd 305 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
148, 13bitr3d 190 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
156, 14sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( A  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
1615anassrs 400 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A  e.  u  <->  ( k  e. 
dom  F  /\  ( F `  k )  e.  u ) ) )
1716ralbidva 2471 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A  e.  u  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
1817rexbidva 2472 . . . . . . 7  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
1918imbi2d 230 . . . . . 6  |-  ( ph  ->  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )  <->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2019ralbidv 2475 . . . . 5  |-  ( ph  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2120anbi2d 464 . . . 4  |-  ( ph  ->  ( ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
)  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) )
22 toponmax 13103 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
231, 22syl 14 . . . . . . 7  |-  ( ph  ->  X  e.  J )
24 cnex 7910 . . . . . . 7  |-  CC  e.  _V
2523, 24jctir 313 . . . . . 6  |-  ( ph  ->  ( X  e.  J  /\  CC  e.  _V )
)
26 uzssz 9520 . . . . . . . . 9  |-  ( ZZ>= `  M )  C_  ZZ
27 zsscn 9234 . . . . . . . . 9  |-  ZZ  C_  CC
2826, 27sstri 3162 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  CC
292, 28eqsstri 3185 . . . . . . 7  |-  Z  C_  CC
309, 29jctir 313 . . . . . 6  |-  ( ph  ->  ( F : Z --> X  /\  Z  C_  CC ) )
31 elpm2r 6656 . . . . . 6  |-  ( ( ( X  e.  J  /\  CC  e.  _V )  /\  ( F : Z --> X  /\  Z  C_  CC ) )  ->  F  e.  ( X  ^pm  CC ) )
3225, 30, 31syl2anc 411 . . . . 5  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
3332biantrurd 305 . . . 4  |-  ( ph  ->  ( ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) ) )
3421, 33bitr2d 189 . . 3  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) )  <-> 
( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A  e.  u ) ) ) )
355, 34bitrid 192 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
364, 35bitrd 188 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453   E.wrex 2454   _Vcvv 2735    C_ wss 3127   class class class wbr 3998   dom cdm 4620   -->wf 5204   ` cfv 5208  (class class class)co 5865    ^pm cpm 6639   CCcc 7784   ZZcz 9226   ZZ>=cuz 9501  TopOnctopon 13088   ~~> tclm 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-pm 6641  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502  df-top 13076  df-topon 13089  df-lm 13270
This theorem is referenced by:  lmconst  13296  lmss  13326  txlm  13359
  Copyright terms: Public domain W3C validator