| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lmbrf | Unicode version | ||
| Description: Express the binary
relation "sequence  | 
| Ref | Expression | 
|---|---|
| lmbr.2 | 
 | 
| lmbr2.4 | 
 | 
| lmbr2.5 | 
 | 
| lmbrf.6 | 
 | 
| lmbrf.7 | 
 | 
| Ref | Expression | 
|---|---|
| lmbrf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lmbr.2 | 
. . 3
 | |
| 2 | lmbr2.4 | 
. . 3
 | |
| 3 | lmbr2.5 | 
. . 3
 | |
| 4 | 1, 2, 3 | lmbr2 14450 | 
. 2
 | 
| 5 | 3anass 984 | 
. . 3
 | |
| 6 | 2 | uztrn2 9619 | 
. . . . . . . . . . 11
 | 
| 7 | lmbrf.7 | 
. . . . . . . . . . . . 13
 | |
| 8 | 7 | eleq1d 2265 | 
. . . . . . . . . . . 12
 | 
| 9 | lmbrf.6 | 
. . . . . . . . . . . . . . . 16
 | |
| 10 | 9 | fdmd 5414 | 
. . . . . . . . . . . . . . 15
 | 
| 11 | 10 | eleq2d 2266 | 
. . . . . . . . . . . . . 14
 | 
| 12 | 11 | biimpar 297 | 
. . . . . . . . . . . . 13
 | 
| 13 | 12 | biantrurd 305 | 
. . . . . . . . . . . 12
 | 
| 14 | 8, 13 | bitr3d 190 | 
. . . . . . . . . . 11
 | 
| 15 | 6, 14 | sylan2 286 | 
. . . . . . . . . 10
 | 
| 16 | 15 | anassrs 400 | 
. . . . . . . . 9
 | 
| 17 | 16 | ralbidva 2493 | 
. . . . . . . 8
 | 
| 18 | 17 | rexbidva 2494 | 
. . . . . . 7
 | 
| 19 | 18 | imbi2d 230 | 
. . . . . 6
 | 
| 20 | 19 | ralbidv 2497 | 
. . . . 5
 | 
| 21 | 20 | anbi2d 464 | 
. . . 4
 | 
| 22 | toponmax 14261 | 
. . . . . . . 8
 | |
| 23 | 1, 22 | syl 14 | 
. . . . . . 7
 | 
| 24 | cnex 8003 | 
. . . . . . 7
 | |
| 25 | 23, 24 | jctir 313 | 
. . . . . 6
 | 
| 26 | uzssz 9621 | 
. . . . . . . . 9
 | |
| 27 | zsscn 9334 | 
. . . . . . . . 9
 | |
| 28 | 26, 27 | sstri 3192 | 
. . . . . . . 8
 | 
| 29 | 2, 28 | eqsstri 3215 | 
. . . . . . 7
 | 
| 30 | 9, 29 | jctir 313 | 
. . . . . 6
 | 
| 31 | elpm2r 6725 | 
. . . . . 6
 | |
| 32 | 25, 30, 31 | syl2anc 411 | 
. . . . 5
 | 
| 33 | 32 | biantrurd 305 | 
. . . 4
 | 
| 34 | 21, 33 | bitr2d 189 | 
. . 3
 | 
| 35 | 5, 34 | bitrid 192 | 
. 2
 | 
| 36 | 4, 35 | bitrd 188 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pm 6710 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-top 14234 df-topon 14247 df-lm 14426 | 
| This theorem is referenced by: lmconst 14452 lmss 14482 txlm 14515 | 
| Copyright terms: Public domain | W3C validator |