| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmbrf | Unicode version | ||
| Description: Express the binary
relation "sequence |
| Ref | Expression |
|---|---|
| lmbr.2 |
|
| lmbr2.4 |
|
| lmbr2.5 |
|
| lmbrf.6 |
|
| lmbrf.7 |
|
| Ref | Expression |
|---|---|
| lmbrf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmbr.2 |
. . 3
| |
| 2 | lmbr2.4 |
. . 3
| |
| 3 | lmbr2.5 |
. . 3
| |
| 4 | 1, 2, 3 | lmbr2 14801 |
. 2
|
| 5 | 3anass 985 |
. . 3
| |
| 6 | 2 | uztrn2 9701 |
. . . . . . . . . . 11
|
| 7 | lmbrf.7 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | eleq1d 2276 |
. . . . . . . . . . . 12
|
| 9 | lmbrf.6 |
. . . . . . . . . . . . . . . 16
| |
| 10 | 9 | fdmd 5452 |
. . . . . . . . . . . . . . 15
|
| 11 | 10 | eleq2d 2277 |
. . . . . . . . . . . . . 14
|
| 12 | 11 | biimpar 297 |
. . . . . . . . . . . . 13
|
| 13 | 12 | biantrurd 305 |
. . . . . . . . . . . 12
|
| 14 | 8, 13 | bitr3d 190 |
. . . . . . . . . . 11
|
| 15 | 6, 14 | sylan2 286 |
. . . . . . . . . 10
|
| 16 | 15 | anassrs 400 |
. . . . . . . . 9
|
| 17 | 16 | ralbidva 2504 |
. . . . . . . 8
|
| 18 | 17 | rexbidva 2505 |
. . . . . . 7
|
| 19 | 18 | imbi2d 230 |
. . . . . 6
|
| 20 | 19 | ralbidv 2508 |
. . . . 5
|
| 21 | 20 | anbi2d 464 |
. . . 4
|
| 22 | toponmax 14612 |
. . . . . . . 8
| |
| 23 | 1, 22 | syl 14 |
. . . . . . 7
|
| 24 | cnex 8084 |
. . . . . . 7
| |
| 25 | 23, 24 | jctir 313 |
. . . . . 6
|
| 26 | uzssz 9703 |
. . . . . . . . 9
| |
| 27 | zsscn 9415 |
. . . . . . . . 9
| |
| 28 | 26, 27 | sstri 3210 |
. . . . . . . 8
|
| 29 | 2, 28 | eqsstri 3233 |
. . . . . . 7
|
| 30 | 9, 29 | jctir 313 |
. . . . . 6
|
| 31 | elpm2r 6776 |
. . . . . 6
| |
| 32 | 25, 30, 31 | syl2anc 411 |
. . . . 5
|
| 33 | 32 | biantrurd 305 |
. . . 4
|
| 34 | 21, 33 | bitr2d 189 |
. . 3
|
| 35 | 5, 34 | bitrid 192 |
. 2
|
| 36 | 4, 35 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pm 6761 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-top 14585 df-topon 14598 df-lm 14777 |
| This theorem is referenced by: lmconst 14803 lmss 14833 txlm 14866 |
| Copyright terms: Public domain | W3C validator |