| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmbrf | Unicode version | ||
| Description: Express the binary
relation "sequence |
| Ref | Expression |
|---|---|
| lmbr.2 |
|
| lmbr2.4 |
|
| lmbr2.5 |
|
| lmbrf.6 |
|
| lmbrf.7 |
|
| Ref | Expression |
|---|---|
| lmbrf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmbr.2 |
. . 3
| |
| 2 | lmbr2.4 |
. . 3
| |
| 3 | lmbr2.5 |
. . 3
| |
| 4 | 1, 2, 3 | lmbr2 14534 |
. 2
|
| 5 | 3anass 984 |
. . 3
| |
| 6 | 2 | uztrn2 9636 |
. . . . . . . . . . 11
|
| 7 | lmbrf.7 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | eleq1d 2265 |
. . . . . . . . . . . 12
|
| 9 | lmbrf.6 |
. . . . . . . . . . . . . . . 16
| |
| 10 | 9 | fdmd 5417 |
. . . . . . . . . . . . . . 15
|
| 11 | 10 | eleq2d 2266 |
. . . . . . . . . . . . . 14
|
| 12 | 11 | biimpar 297 |
. . . . . . . . . . . . 13
|
| 13 | 12 | biantrurd 305 |
. . . . . . . . . . . 12
|
| 14 | 8, 13 | bitr3d 190 |
. . . . . . . . . . 11
|
| 15 | 6, 14 | sylan2 286 |
. . . . . . . . . 10
|
| 16 | 15 | anassrs 400 |
. . . . . . . . 9
|
| 17 | 16 | ralbidva 2493 |
. . . . . . . 8
|
| 18 | 17 | rexbidva 2494 |
. . . . . . 7
|
| 19 | 18 | imbi2d 230 |
. . . . . 6
|
| 20 | 19 | ralbidv 2497 |
. . . . 5
|
| 21 | 20 | anbi2d 464 |
. . . 4
|
| 22 | toponmax 14345 |
. . . . . . . 8
| |
| 23 | 1, 22 | syl 14 |
. . . . . . 7
|
| 24 | cnex 8020 |
. . . . . . 7
| |
| 25 | 23, 24 | jctir 313 |
. . . . . 6
|
| 26 | uzssz 9638 |
. . . . . . . . 9
| |
| 27 | zsscn 9351 |
. . . . . . . . 9
| |
| 28 | 26, 27 | sstri 3193 |
. . . . . . . 8
|
| 29 | 2, 28 | eqsstri 3216 |
. . . . . . 7
|
| 30 | 9, 29 | jctir 313 |
. . . . . 6
|
| 31 | elpm2r 6734 |
. . . . . 6
| |
| 32 | 25, 30, 31 | syl2anc 411 |
. . . . 5
|
| 33 | 32 | biantrurd 305 |
. . . 4
|
| 34 | 21, 33 | bitr2d 189 |
. . 3
|
| 35 | 5, 34 | bitrid 192 |
. 2
|
| 36 | 4, 35 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pm 6719 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-top 14318 df-topon 14331 df-lm 14510 |
| This theorem is referenced by: lmconst 14536 lmss 14566 txlm 14599 |
| Copyright terms: Public domain | W3C validator |