ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetresbl Unicode version

Theorem xmetresbl 12609
Description: An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec 12606, this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +oo from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypothesis
Ref Expression
xmetresbl.1  |-  B  =  ( P ( ball `  D ) R )
Assertion
Ref Expression
xmetresbl  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) )  e.  ( Met `  B
) )

Proof of Theorem xmetresbl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 981 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  D  e.  ( *Met `  X ) )
2 xmetresbl.1 . . . 4  |-  B  =  ( P ( ball `  D ) R )
3 blssm 12590 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R ) 
C_  X )
42, 3eqsstrid 3143 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  B  C_  X )
5 xmetres2 12548 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  B  C_  X
)  ->  ( D  |`  ( B  X.  B
) )  e.  ( *Met `  B
) )
61, 4, 5syl2anc 408 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) )  e.  ( *Met `  B ) )
7 xmetf 12519 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
81, 7syl 14 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  D : ( X  X.  X ) --> RR* )
9 xpss12 4646 . . . . . 6  |-  ( ( B  C_  X  /\  B  C_  X )  -> 
( B  X.  B
)  C_  ( X  X.  X ) )
104, 4, 9syl2anc 408 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( B  X.  B
)  C_  ( X  X.  X ) )
118, 10fssresd 5299 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) ) : ( B  X.  B ) --> RR* )
1211ffnd 5273 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) )  Fn  ( B  X.  B ) )
13 ovres 5910 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x ( D  |`  ( B  X.  B
) ) y )  =  ( x D y ) )
1413adantl 275 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( D  |`  ( B  X.  B
) ) y )  =  ( x D y ) )
15 simpl1 984 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  ( *Met `  X ) )
16 eqid 2139 . . . . . . . . . 10  |-  ( `' D " RR )  =  ( `' D " RR )
1716xmeter 12605 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  ( `' D " RR )  Er  X )
1815, 17syl 14 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( `' D " RR )  Er  X
)
1916blssec 12607 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R ) 
C_  [ P ]
( `' D " RR ) )
202, 19eqsstrid 3143 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  B  C_  [ P ] ( `' D " RR ) )
2120sselda 3097 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  x  e.  B
)  ->  x  e.  [ P ] ( `' D " RR ) )
2221adantrr 470 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  e.  [ P ] ( `' D " RR ) )
23 simpl2 985 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  P  e.  X )
24 elecg 6467 . . . . . . . . . 10  |-  ( ( x  e.  [ P ] ( `' D " RR )  /\  P  e.  X )  ->  (
x  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) x ) )
2522, 23, 24syl2anc 408 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) x ) )
2622, 25mpbid 146 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  P ( `' D " RR ) x )
2720sselda 3097 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  B
)  ->  y  e.  [ P ] ( `' D " RR ) )
2827adantrl 469 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y  e.  [ P ] ( `' D " RR ) )
29 elecg 6467 . . . . . . . . . 10  |-  ( ( y  e.  [ P ] ( `' D " RR )  /\  P  e.  X )  ->  (
y  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) y ) )
3028, 23, 29syl2anc 408 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( y  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) y ) )
3128, 30mpbid 146 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  P ( `' D " RR ) y )
3218, 26, 31ertr3d 6447 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x ( `' D " RR ) y )
3316xmeterval 12604 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  (
x ( `' D " RR ) y  <->  ( x  e.  X  /\  y  e.  X  /\  (
x D y )  e.  RR ) ) )
3415, 33syl 14 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( `' D " RR ) y  <->  ( x  e.  X  /\  y  e.  X  /\  ( x D y )  e.  RR ) ) )
3532, 34mpbid 146 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  e.  X  /\  y  e.  X  /\  ( x D y )  e.  RR ) )
3635simp3d 995 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x D y )  e.  RR )
3714, 36eqeltrd 2216 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( D  |`  ( B  X.  B
) ) y )  e.  RR )
3837ralrimivva 2514 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  A. x  e.  B  A. y  e.  B  ( x ( D  |`  ( B  X.  B
) ) y )  e.  RR )
39 ffnov 5875 . . 3  |-  ( ( D  |`  ( B  X.  B ) ) : ( B  X.  B
) --> RR  <->  ( ( D  |`  ( B  X.  B ) )  Fn  ( B  X.  B
)  /\  A. x  e.  B  A. y  e.  B  ( x
( D  |`  ( B  X.  B ) ) y )  e.  RR ) )
4012, 38, 39sylanbrc 413 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) ) : ( B  X.  B ) --> RR )
41 ismet2 12523 . 2  |-  ( ( D  |`  ( B  X.  B ) )  e.  ( Met `  B
)  <->  ( ( D  |`  ( B  X.  B
) )  e.  ( *Met `  B
)  /\  ( D  |`  ( B  X.  B
) ) : ( B  X.  B ) --> RR ) )
426, 40, 41sylanbrc 413 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) )  e.  ( Met `  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416    C_ wss 3071   class class class wbr 3929    X. cxp 4537   `'ccnv 4538    |` cres 4541   "cima 4542    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774    Er wer 6426   [cec 6427   RRcr 7619   RR*cxr 7799   *Metcxmet 12149   Metcmet 12150   ballcbl 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-er 6429  df-ec 6431  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-2 8779  df-xneg 9559  df-xadd 9560  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator