| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmetresbl | Unicode version | ||
| Description: An extended metric
restricted to any ball (in particular the infinity
ball) is a proper metric. Together with xmetec 14942, this shows that any
extended metric space can be "factored" into the disjoint
union of
proper metric spaces, with points in the same region measured by that
region's metric, and points in different regions being distance |
| Ref | Expression |
|---|---|
| xmetresbl.1 |
|
| Ref | Expression |
|---|---|
| xmetresbl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . 3
| |
| 2 | xmetresbl.1 |
. . . 4
| |
| 3 | blssm 14926 |
. . . 4
| |
| 4 | 2, 3 | eqsstrid 3239 |
. . 3
|
| 5 | xmetres2 14884 |
. . 3
| |
| 6 | 1, 4, 5 | syl2anc 411 |
. 2
|
| 7 | xmetf 14855 |
. . . . . 6
| |
| 8 | 1, 7 | syl 14 |
. . . . 5
|
| 9 | xpss12 4783 |
. . . . . 6
| |
| 10 | 4, 4, 9 | syl2anc 411 |
. . . . 5
|
| 11 | 8, 10 | fssresd 5454 |
. . . 4
|
| 12 | 11 | ffnd 5428 |
. . 3
|
| 13 | ovres 6088 |
. . . . . 6
| |
| 14 | 13 | adantl 277 |
. . . . 5
|
| 15 | simpl1 1003 |
. . . . . . . . 9
| |
| 16 | eqid 2205 |
. . . . . . . . . 10
| |
| 17 | 16 | xmeter 14941 |
. . . . . . . . 9
|
| 18 | 15, 17 | syl 14 |
. . . . . . . 8
|
| 19 | 16 | blssec 14943 |
. . . . . . . . . . . 12
|
| 20 | 2, 19 | eqsstrid 3239 |
. . . . . . . . . . 11
|
| 21 | 20 | sselda 3193 |
. . . . . . . . . 10
|
| 22 | 21 | adantrr 479 |
. . . . . . . . 9
|
| 23 | simpl2 1004 |
. . . . . . . . . 10
| |
| 24 | elecg 6662 |
. . . . . . . . . 10
| |
| 25 | 22, 23, 24 | syl2anc 411 |
. . . . . . . . 9
|
| 26 | 22, 25 | mpbid 147 |
. . . . . . . 8
|
| 27 | 20 | sselda 3193 |
. . . . . . . . . 10
|
| 28 | 27 | adantrl 478 |
. . . . . . . . 9
|
| 29 | elecg 6662 |
. . . . . . . . . 10
| |
| 30 | 28, 23, 29 | syl2anc 411 |
. . . . . . . . 9
|
| 31 | 28, 30 | mpbid 147 |
. . . . . . . 8
|
| 32 | 18, 26, 31 | ertr3d 6640 |
. . . . . . 7
|
| 33 | 16 | xmeterval 14940 |
. . . . . . . 8
|
| 34 | 15, 33 | syl 14 |
. . . . . . 7
|
| 35 | 32, 34 | mpbid 147 |
. . . . . 6
|
| 36 | 35 | simp3d 1014 |
. . . . 5
|
| 37 | 14, 36 | eqeltrd 2282 |
. . . 4
|
| 38 | 37 | ralrimivva 2588 |
. . 3
|
| 39 | ffnov 6051 |
. . 3
| |
| 40 | 12, 38, 39 | sylanbrc 417 |
. 2
|
| 41 | ismet2 14859 |
. 2
| |
| 42 | 6, 40, 41 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-er 6622 df-ec 6624 df-map 6739 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-2 9097 df-xneg 9896 df-xadd 9897 df-psmet 14338 df-xmet 14339 df-met 14340 df-bl 14341 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |