ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetresbl Unicode version

Theorem xmetresbl 14945
Description: An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec 14942, this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +oo from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypothesis
Ref Expression
xmetresbl.1  |-  B  =  ( P ( ball `  D ) R )
Assertion
Ref Expression
xmetresbl  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) )  e.  ( Met `  B
) )

Proof of Theorem xmetresbl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1000 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  D  e.  ( *Met `  X ) )
2 xmetresbl.1 . . . 4  |-  B  =  ( P ( ball `  D ) R )
3 blssm 14926 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R ) 
C_  X )
42, 3eqsstrid 3239 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  B  C_  X )
5 xmetres2 14884 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  B  C_  X
)  ->  ( D  |`  ( B  X.  B
) )  e.  ( *Met `  B
) )
61, 4, 5syl2anc 411 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) )  e.  ( *Met `  B ) )
7 xmetf 14855 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
81, 7syl 14 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  D : ( X  X.  X ) --> RR* )
9 xpss12 4783 . . . . . 6  |-  ( ( B  C_  X  /\  B  C_  X )  -> 
( B  X.  B
)  C_  ( X  X.  X ) )
104, 4, 9syl2anc 411 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( B  X.  B
)  C_  ( X  X.  X ) )
118, 10fssresd 5454 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) ) : ( B  X.  B ) --> RR* )
1211ffnd 5428 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) )  Fn  ( B  X.  B ) )
13 ovres 6088 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x ( D  |`  ( B  X.  B
) ) y )  =  ( x D y ) )
1413adantl 277 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( D  |`  ( B  X.  B
) ) y )  =  ( x D y ) )
15 simpl1 1003 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  ( *Met `  X ) )
16 eqid 2205 . . . . . . . . . 10  |-  ( `' D " RR )  =  ( `' D " RR )
1716xmeter 14941 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  ( `' D " RR )  Er  X )
1815, 17syl 14 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( `' D " RR )  Er  X
)
1916blssec 14943 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R ) 
C_  [ P ]
( `' D " RR ) )
202, 19eqsstrid 3239 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  B  C_  [ P ] ( `' D " RR ) )
2120sselda 3193 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  x  e.  B
)  ->  x  e.  [ P ] ( `' D " RR ) )
2221adantrr 479 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  e.  [ P ] ( `' D " RR ) )
23 simpl2 1004 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  P  e.  X )
24 elecg 6662 . . . . . . . . . 10  |-  ( ( x  e.  [ P ] ( `' D " RR )  /\  P  e.  X )  ->  (
x  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) x ) )
2522, 23, 24syl2anc 411 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) x ) )
2622, 25mpbid 147 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  P ( `' D " RR ) x )
2720sselda 3193 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  B
)  ->  y  e.  [ P ] ( `' D " RR ) )
2827adantrl 478 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y  e.  [ P ] ( `' D " RR ) )
29 elecg 6662 . . . . . . . . . 10  |-  ( ( y  e.  [ P ] ( `' D " RR )  /\  P  e.  X )  ->  (
y  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) y ) )
3028, 23, 29syl2anc 411 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( y  e.  [ P ] ( `' D " RR )  <->  P ( `' D " RR ) y ) )
3128, 30mpbid 147 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  P ( `' D " RR ) y )
3218, 26, 31ertr3d 6640 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x ( `' D " RR ) y )
3316xmeterval 14940 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  (
x ( `' D " RR ) y  <->  ( x  e.  X  /\  y  e.  X  /\  (
x D y )  e.  RR ) ) )
3415, 33syl 14 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( `' D " RR ) y  <->  ( x  e.  X  /\  y  e.  X  /\  ( x D y )  e.  RR ) ) )
3532, 34mpbid 147 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  e.  X  /\  y  e.  X  /\  ( x D y )  e.  RR ) )
3635simp3d 1014 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x D y )  e.  RR )
3714, 36eqeltrd 2282 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( D  |`  ( B  X.  B
) ) y )  e.  RR )
3837ralrimivva 2588 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  A. x  e.  B  A. y  e.  B  ( x ( D  |`  ( B  X.  B
) ) y )  e.  RR )
39 ffnov 6051 . . 3  |-  ( ( D  |`  ( B  X.  B ) ) : ( B  X.  B
) --> RR  <->  ( ( D  |`  ( B  X.  B ) )  Fn  ( B  X.  B
)  /\  A. x  e.  B  A. y  e.  B  ( x
( D  |`  ( B  X.  B ) ) y )  e.  RR ) )
4012, 38, 39sylanbrc 417 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) ) : ( B  X.  B ) --> RR )
41 ismet2 14859 . 2  |-  ( ( D  |`  ( B  X.  B ) )  e.  ( Met `  B
)  <->  ( ( D  |`  ( B  X.  B
) )  e.  ( *Met `  B
)  /\  ( D  |`  ( B  X.  B
) ) : ( B  X.  B ) --> RR ) )
426, 40, 41sylanbrc 417 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) )  e.  ( Met `  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   class class class wbr 4045    X. cxp 4674   `'ccnv 4675    |` cres 4678   "cima 4679    Fn wfn 5267   -->wf 5268   ` cfv 5272  (class class class)co 5946    Er wer 6619   [cec 6620   RRcr 7926   RR*cxr 8108   *Metcxmet 14331   Metcmet 14332   ballcbl 14333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-er 6622  df-ec 6624  df-map 6739  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-2 9097  df-xneg 9896  df-xadd 9897  df-psmet 14338  df-xmet 14339  df-met 14340  df-bl 14341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator