Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmetresbl | Unicode version |
Description: An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec 13488, this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance from each other. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xmetresbl.1 |
Ref | Expression |
---|---|
xmetresbl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . . 3 | |
2 | xmetresbl.1 | . . . 4 | |
3 | blssm 13472 | . . . 4 | |
4 | 2, 3 | eqsstrid 3199 | . . 3 |
5 | xmetres2 13430 | . . 3 | |
6 | 1, 4, 5 | syl2anc 411 | . 2 |
7 | xmetf 13401 | . . . . . 6 | |
8 | 1, 7 | syl 14 | . . . . 5 |
9 | xpss12 4727 | . . . . . 6 | |
10 | 4, 4, 9 | syl2anc 411 | . . . . 5 |
11 | 8, 10 | fssresd 5384 | . . . 4 |
12 | 11 | ffnd 5358 | . . 3 |
13 | ovres 6004 | . . . . . 6 | |
14 | 13 | adantl 277 | . . . . 5 |
15 | simpl1 1000 | . . . . . . . . 9 | |
16 | eqid 2175 | . . . . . . . . . 10 | |
17 | 16 | xmeter 13487 | . . . . . . . . 9 |
18 | 15, 17 | syl 14 | . . . . . . . 8 |
19 | 16 | blssec 13489 | . . . . . . . . . . . 12 |
20 | 2, 19 | eqsstrid 3199 | . . . . . . . . . . 11 |
21 | 20 | sselda 3153 | . . . . . . . . . 10 |
22 | 21 | adantrr 479 | . . . . . . . . 9 |
23 | simpl2 1001 | . . . . . . . . . 10 | |
24 | elecg 6563 | . . . . . . . . . 10 | |
25 | 22, 23, 24 | syl2anc 411 | . . . . . . . . 9 |
26 | 22, 25 | mpbid 147 | . . . . . . . 8 |
27 | 20 | sselda 3153 | . . . . . . . . . 10 |
28 | 27 | adantrl 478 | . . . . . . . . 9 |
29 | elecg 6563 | . . . . . . . . . 10 | |
30 | 28, 23, 29 | syl2anc 411 | . . . . . . . . 9 |
31 | 28, 30 | mpbid 147 | . . . . . . . 8 |
32 | 18, 26, 31 | ertr3d 6543 | . . . . . . 7 |
33 | 16 | xmeterval 13486 | . . . . . . . 8 |
34 | 15, 33 | syl 14 | . . . . . . 7 |
35 | 32, 34 | mpbid 147 | . . . . . 6 |
36 | 35 | simp3d 1011 | . . . . 5 |
37 | 14, 36 | eqeltrd 2252 | . . . 4 |
38 | 37 | ralrimivva 2557 | . . 3 |
39 | ffnov 5969 | . . 3 | |
40 | 12, 38, 39 | sylanbrc 417 | . 2 |
41 | ismet2 13405 | . 2 | |
42 | 6, 40, 41 | sylanbrc 417 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 wral 2453 wss 3127 class class class wbr 3998 cxp 4618 ccnv 4619 cres 4622 cima 4623 wfn 5203 wf 5204 cfv 5208 (class class class)co 5865 wer 6522 cec 6523 cr 7785 cxr 7965 cxmet 13031 cmet 13032 cbl 13033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-er 6525 df-ec 6527 df-map 6640 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-2 8949 df-xneg 9741 df-xadd 9742 df-psmet 13038 df-xmet 13039 df-met 13040 df-bl 13041 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |