ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxms2 Unicode version

Theorem isxms2 12610
Description: Express the predicate " <. X ,  D >. is an extended metric space" with underlying set  X and distance function  D. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
isms.j  |-  J  =  ( TopOpen `  K )
isms.x  |-  X  =  ( Base `  K
)
isms.d  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
isxms2  |-  ( K  e.  *MetSp  <->  ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D
) ) )

Proof of Theorem isxms2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isms.j . . 3  |-  J  =  ( TopOpen `  K )
2 isms.x . . 3  |-  X  =  ( Base `  K
)
3 isms.d . . 3  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
41, 2, 3isxms 12609 . 2  |-  ( K  e.  *MetSp  <->  ( K  e.  TopSp  /\  J  =  ( MetOpen `  D )
) )
52, 1istps 12188 . . . 4  |-  ( K  e.  TopSp 
<->  J  e.  (TopOn `  X ) )
6 df-mopn 12149 . . . . . . . . . 10  |-  MetOpen  =  ( x  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  x )
) )
76dmmptss 5030 . . . . . . . . 9  |-  dom  MetOpen  C_  U. ran  *Met
8 mopnrel 12599 . . . . . . . . . 10  |-  Rel  MetOpen
9 toponmax 12181 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
109adantl 275 . . . . . . . . . . 11  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  X  e.  J )
11 simpl 108 . . . . . . . . . . 11  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  J  =  ( MetOpen `  D )
)
1210, 11eleqtrd 2216 . . . . . . . . . 10  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  X  e.  ( MetOpen `  D )
)
13 relelfvdm 5446 . . . . . . . . . 10  |-  ( ( Rel  MetOpen  /\  X  e.  ( MetOpen `  D )
)  ->  D  e.  dom 
MetOpen )
148, 12, 13sylancr 410 . . . . . . . . 9  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  dom 
MetOpen )
157, 14sseldi 3090 . . . . . . . 8  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  U.
ran  *Met )
16 xmetunirn 12516 . . . . . . . 8  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
1715, 16sylib 121 . . . . . . 7  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  ( *Met `  dom  dom 
D ) )
18 eqid 2137 . . . . . . . . . . . . 13  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
1918mopntopon 12601 . . . . . . . . . . . 12  |-  ( D  e.  ( *Met ` 
dom  dom  D )  -> 
( MetOpen `  D )  e.  (TopOn `  dom  dom  D
) )
2017, 19syl 14 . . . . . . . . . . 11  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  ( MetOpen `  D )  e.  (TopOn `  dom  dom  D )
)
2111, 20eqeltrd 2214 . . . . . . . . . 10  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  J  e.  (TopOn `  dom  dom  D
) )
22 toponuni 12171 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  dom  dom 
D )  ->  dom  dom 
D  =  U. J
)
2321, 22syl 14 . . . . . . . . 9  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  dom  dom  D  =  U. J )
24 toponuni 12171 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2524adantl 275 . . . . . . . . 9  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  X  =  U. J )
2623, 25eqtr4d 2173 . . . . . . . 8  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  dom  dom  D  =  X )
2726fveq2d 5418 . . . . . . 7  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  ( *Met `  dom  dom  D
)  =  ( *Met `  X ) )
2817, 27eleqtrd 2216 . . . . . 6  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  ( *Met `  X
) )
2928ex 114 . . . . 5  |-  ( J  =  ( MetOpen `  D
)  ->  ( J  e.  (TopOn `  X )  ->  D  e.  ( *Met `  X ) ) )
3018mopntopon 12601 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( MetOpen
`  D )  e.  (TopOn `  X )
)
31 eleq1 2200 . . . . . 6  |-  ( J  =  ( MetOpen `  D
)  ->  ( J  e.  (TopOn `  X )  <->  (
MetOpen `  D )  e.  (TopOn `  X )
) )
3230, 31syl5ibr 155 . . . . 5  |-  ( J  =  ( MetOpen `  D
)  ->  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
) )
3329, 32impbid 128 . . . 4  |-  ( J  =  ( MetOpen `  D
)  ->  ( J  e.  (TopOn `  X )  <->  D  e.  ( *Met `  X ) ) )
345, 33syl5bb 191 . . 3  |-  ( J  =  ( MetOpen `  D
)  ->  ( K  e.  TopSp 
<->  D  e.  ( *Met `  X ) ) )
3534pm5.32ri 450 . 2  |-  ( ( K  e.  TopSp  /\  J  =  ( MetOpen `  D
) )  <->  ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D
) ) )
364, 35bitri 183 1  |-  ( K  e.  *MetSp  <->  ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   U.cuni 3731    X. cxp 4532   dom cdm 4534   ran crn 4535    |` cres 4536   Rel wrel 4539   ` cfv 5118   Basecbs 11948   distcds 12019   TopOpenctopn 12110   topGenctg 12124   *Metcxmet 12138   ballcbl 12140   MetOpencmopn 12143  TopOnctopon 12166   TopSpctps 12186   *MetSpcxms 12494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-map 6537  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-5 8775  df-6 8776  df-7 8777  df-8 8778  df-9 8779  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-xneg 9552  df-xadd 9553  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-ndx 11951  df-slot 11952  df-base 11954  df-tset 12029  df-rest 12111  df-topn 12112  df-topgen 12130  df-psmet 12145  df-xmet 12146  df-bl 12148  df-mopn 12149  df-top 12154  df-topon 12167  df-topsp 12187  df-bases 12199  df-xms 12497
This theorem is referenced by:  isms2  12612  xmsxmet  12618
  Copyright terms: Public domain W3C validator