ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxms2 Unicode version

Theorem isxms2 13523
Description: Express the predicate " <. X ,  D >. is an extended metric space" with underlying set  X and distance function  D. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
isms.j  |-  J  =  ( TopOpen `  K )
isms.x  |-  X  =  ( Base `  K
)
isms.d  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
isxms2  |-  ( K  e.  *MetSp  <->  ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D
) ) )

Proof of Theorem isxms2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isms.j . . 3  |-  J  =  ( TopOpen `  K )
2 isms.x . . 3  |-  X  =  ( Base `  K
)
3 isms.d . . 3  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
41, 2, 3isxms 13522 . 2  |-  ( K  e.  *MetSp  <->  ( K  e.  TopSp  /\  J  =  ( MetOpen `  D )
) )
52, 1istps 13101 . . . 4  |-  ( K  e.  TopSp 
<->  J  e.  (TopOn `  X ) )
6 df-mopn 13062 . . . . . . . . . 10  |-  MetOpen  =  ( x  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  x )
) )
76dmmptss 5117 . . . . . . . . 9  |-  dom  MetOpen  C_  U. ran  *Met
8 mopnrel 13512 . . . . . . . . . 10  |-  Rel  MetOpen
9 toponmax 13094 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
109adantl 277 . . . . . . . . . . 11  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  X  e.  J )
11 simpl 109 . . . . . . . . . . 11  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  J  =  ( MetOpen `  D )
)
1210, 11eleqtrd 2254 . . . . . . . . . 10  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  X  e.  ( MetOpen `  D )
)
13 relelfvdm 5539 . . . . . . . . . 10  |-  ( ( Rel  MetOpen  /\  X  e.  ( MetOpen `  D )
)  ->  D  e.  dom 
MetOpen )
148, 12, 13sylancr 414 . . . . . . . . 9  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  dom 
MetOpen )
157, 14sselid 3151 . . . . . . . 8  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  U.
ran  *Met )
16 xmetunirn 13429 . . . . . . . 8  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
1715, 16sylib 122 . . . . . . 7  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  ( *Met `  dom  dom 
D ) )
18 eqid 2175 . . . . . . . . . . . . 13  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
1918mopntopon 13514 . . . . . . . . . . . 12  |-  ( D  e.  ( *Met ` 
dom  dom  D )  -> 
( MetOpen `  D )  e.  (TopOn `  dom  dom  D
) )
2017, 19syl 14 . . . . . . . . . . 11  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  ( MetOpen `  D )  e.  (TopOn `  dom  dom  D )
)
2111, 20eqeltrd 2252 . . . . . . . . . 10  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  J  e.  (TopOn `  dom  dom  D
) )
22 toponuni 13084 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  dom  dom 
D )  ->  dom  dom 
D  =  U. J
)
2321, 22syl 14 . . . . . . . . 9  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  dom  dom  D  =  U. J )
24 toponuni 13084 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2524adantl 277 . . . . . . . . 9  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  X  =  U. J )
2623, 25eqtr4d 2211 . . . . . . . 8  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  dom  dom  D  =  X )
2726fveq2d 5511 . . . . . . 7  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  ( *Met `  dom  dom  D
)  =  ( *Met `  X ) )
2817, 27eleqtrd 2254 . . . . . 6  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  ( *Met `  X
) )
2928ex 115 . . . . 5  |-  ( J  =  ( MetOpen `  D
)  ->  ( J  e.  (TopOn `  X )  ->  D  e.  ( *Met `  X ) ) )
3018mopntopon 13514 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( MetOpen
`  D )  e.  (TopOn `  X )
)
31 eleq1 2238 . . . . . 6  |-  ( J  =  ( MetOpen `  D
)  ->  ( J  e.  (TopOn `  X )  <->  (
MetOpen `  D )  e.  (TopOn `  X )
) )
3230, 31syl5ibr 156 . . . . 5  |-  ( J  =  ( MetOpen `  D
)  ->  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
) )
3329, 32impbid 129 . . . 4  |-  ( J  =  ( MetOpen `  D
)  ->  ( J  e.  (TopOn `  X )  <->  D  e.  ( *Met `  X ) ) )
345, 33bitrid 192 . . 3  |-  ( J  =  ( MetOpen `  D
)  ->  ( K  e.  TopSp 
<->  D  e.  ( *Met `  X ) ) )
3534pm5.32ri 455 . 2  |-  ( ( K  e.  TopSp  /\  J  =  ( MetOpen `  D
) )  <->  ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D
) ) )
364, 35bitri 184 1  |-  ( K  e.  *MetSp  <->  ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   U.cuni 3805    X. cxp 4618   dom cdm 4620   ran crn 4621    |` cres 4622   Rel wrel 4625   ` cfv 5208   Basecbs 12429   distcds 12502   TopOpenctopn 12611   topGenctg 12625   *Metcxmet 13051   ballcbl 13053   MetOpencmopn 13056  TopOnctopon 13079   TopSpctps 13099   *MetSpcxms 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-map 6640  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-5 8954  df-6 8955  df-7 8956  df-8 8957  df-9 8958  df-n0 9150  df-z 9227  df-uz 9502  df-q 9593  df-rp 9625  df-xneg 9743  df-xadd 9744  df-seqfrec 10416  df-exp 10490  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976  df-ndx 12432  df-slot 12433  df-base 12435  df-tset 12512  df-rest 12612  df-topn 12613  df-topgen 12631  df-psmet 13058  df-xmet 13059  df-bl 13061  df-mopn 13062  df-top 13067  df-topon 13080  df-topsp 13100  df-bases 13112  df-xms 13410
This theorem is referenced by:  isms2  13525  xmsxmet  13531
  Copyright terms: Public domain W3C validator