ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxms2 Unicode version

Theorem isxms2 14631
Description: Express the predicate " <. X ,  D >. is an extended metric space" with underlying set  X and distance function  D. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
isms.j  |-  J  =  ( TopOpen `  K )
isms.x  |-  X  =  ( Base `  K
)
isms.d  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
isxms2  |-  ( K  e.  *MetSp  <->  ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D
) ) )

Proof of Theorem isxms2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isms.j . . 3  |-  J  =  ( TopOpen `  K )
2 isms.x . . 3  |-  X  =  ( Base `  K
)
3 isms.d . . 3  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
41, 2, 3isxms 14630 . 2  |-  ( K  e.  *MetSp  <->  ( K  e.  TopSp  /\  J  =  ( MetOpen `  D )
) )
52, 1istps 14211 . . . 4  |-  ( K  e.  TopSp 
<->  J  e.  (TopOn `  X ) )
6 df-mopn 14046 . . . . . . . . . 10  |-  MetOpen  =  ( x  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  x )
) )
76dmmptss 5163 . . . . . . . . 9  |-  dom  MetOpen  C_  U. ran  *Met
8 mopnrel 14620 . . . . . . . . . 10  |-  Rel  MetOpen
9 toponmax 14204 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
109adantl 277 . . . . . . . . . . 11  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  X  e.  J )
11 simpl 109 . . . . . . . . . . 11  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  J  =  ( MetOpen `  D )
)
1210, 11eleqtrd 2272 . . . . . . . . . 10  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  X  e.  ( MetOpen `  D )
)
13 relelfvdm 5587 . . . . . . . . . 10  |-  ( ( Rel  MetOpen  /\  X  e.  ( MetOpen `  D )
)  ->  D  e.  dom 
MetOpen )
148, 12, 13sylancr 414 . . . . . . . . 9  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  dom 
MetOpen )
157, 14sselid 3178 . . . . . . . 8  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  U.
ran  *Met )
16 xmetunirn 14537 . . . . . . . 8  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
1715, 16sylib 122 . . . . . . 7  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  ( *Met `  dom  dom 
D ) )
18 eqid 2193 . . . . . . . . . . . . 13  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
1918mopntopon 14622 . . . . . . . . . . . 12  |-  ( D  e.  ( *Met ` 
dom  dom  D )  -> 
( MetOpen `  D )  e.  (TopOn `  dom  dom  D
) )
2017, 19syl 14 . . . . . . . . . . 11  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  ( MetOpen `  D )  e.  (TopOn `  dom  dom  D )
)
2111, 20eqeltrd 2270 . . . . . . . . . 10  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  J  e.  (TopOn `  dom  dom  D
) )
22 toponuni 14194 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  dom  dom 
D )  ->  dom  dom 
D  =  U. J
)
2321, 22syl 14 . . . . . . . . 9  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  dom  dom  D  =  U. J )
24 toponuni 14194 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2524adantl 277 . . . . . . . . 9  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  X  =  U. J )
2623, 25eqtr4d 2229 . . . . . . . 8  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  dom  dom  D  =  X )
2726fveq2d 5559 . . . . . . 7  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  ( *Met `  dom  dom  D
)  =  ( *Met `  X ) )
2817, 27eleqtrd 2272 . . . . . 6  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  ( *Met `  X
) )
2928ex 115 . . . . 5  |-  ( J  =  ( MetOpen `  D
)  ->  ( J  e.  (TopOn `  X )  ->  D  e.  ( *Met `  X ) ) )
3018mopntopon 14622 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( MetOpen
`  D )  e.  (TopOn `  X )
)
31 eleq1 2256 . . . . . 6  |-  ( J  =  ( MetOpen `  D
)  ->  ( J  e.  (TopOn `  X )  <->  (
MetOpen `  D )  e.  (TopOn `  X )
) )
3230, 31imbitrrid 156 . . . . 5  |-  ( J  =  ( MetOpen `  D
)  ->  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
) )
3329, 32impbid 129 . . . 4  |-  ( J  =  ( MetOpen `  D
)  ->  ( J  e.  (TopOn `  X )  <->  D  e.  ( *Met `  X ) ) )
345, 33bitrid 192 . . 3  |-  ( J  =  ( MetOpen `  D
)  ->  ( K  e.  TopSp 
<->  D  e.  ( *Met `  X ) ) )
3534pm5.32ri 455 . 2  |-  ( ( K  e.  TopSp  /\  J  =  ( MetOpen `  D
) )  <->  ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D
) ) )
364, 35bitri 184 1  |-  ( K  e.  *MetSp  <->  ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   U.cuni 3836    X. cxp 4658   dom cdm 4660   ran crn 4661    |` cres 4662   Rel wrel 4665   ` cfv 5255   Basecbs 12621   distcds 12707   TopOpenctopn 12854   topGenctg 12868   *Metcxmet 14035   ballcbl 14037   MetOpencmopn 14040  TopOnctopon 14189   TopSpctps 14209   *MetSpcxms 14515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-ndx 12624  df-slot 12625  df-base 12627  df-tset 12717  df-rest 12855  df-topn 12856  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-topsp 14210  df-bases 14222  df-xms 14518
This theorem is referenced by:  isms2  14633  xmsxmet  14639
  Copyright terms: Public domain W3C validator