ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptrel Unicode version

Theorem mptrel 4814
Description: The maps-to notation always describes a relationship. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
mptrel  |-  Rel  (
x  e.  A  |->  B )

Proof of Theorem mptrel
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4115 . 2  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
21relopabi 4811 1  |-  Rel  (
x  e.  A  |->  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2177    |-> cmpt 4113   Rel wrel 4688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-opab 4114  df-mpt 4115  df-xp 4689  df-rel 4690
This theorem is referenced by:  swrd0g  11136  rrgmex  14098  lssmex  14192  2idlmex  14338  cnprcl2k  14753  psmetrel  14869  metrel  14889  xmetrel  14890  xmetf  14897  mopnrel  14988
  Copyright terms: Public domain W3C validator