ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptrel Unicode version

Theorem mptrel 4732
Description: The maps-to notation always describes a relationship. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
mptrel  |-  Rel  (
x  e.  A  |->  B )

Proof of Theorem mptrel
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4045 . 2  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
21relopabi 4730 1  |-  Rel  (
x  e.  A  |->  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136    |-> cmpt 4043   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-mpt 4045  df-xp 4610  df-rel 4611
This theorem is referenced by:  cnprcl2k  12846  psmetrel  12962  metrel  12982  xmetrel  12983  xmetf  12990  mopnrel  13081
  Copyright terms: Public domain W3C validator