ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopnval Unicode version

Theorem mopnval 12517
Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object  ( MetOpen `  D
) is the family of all open sets in the metric space determined by the metric  D. By mopntop 12519, the open sets of a metric space form a topology 
J, whose base set is 
U. J by mopnuni 12520. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
mopnval  |-  ( D  e.  ( *Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )

Proof of Theorem mopnval
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 mopnval.1 . 2  |-  J  =  ( MetOpen `  D )
2 df-mopn 12066 . . 3  |-  MetOpen  =  ( d  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  d )
) )
3 fveq2 5387 . . . . 5  |-  ( d  =  D  ->  ( ball `  d )  =  ( ball `  D
) )
43rneqd 4736 . . . 4  |-  ( d  =  D  ->  ran  ( ball `  d )  =  ran  ( ball `  D
) )
54fveq2d 5391 . . 3  |-  ( d  =  D  ->  ( topGen `
 ran  ( ball `  d ) )  =  ( topGen `  ran  ( ball `  D ) ) )
6 xmetrel 12418 . . . . . . . 8  |-  Rel  *Met
7 relelfvdm 5419 . . . . . . . 8  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
86, 7mpan 418 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
98elexd 2671 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  X  e.  _V )
10 fvssunirng 5402 . . . . . 6  |-  ( X  e.  _V  ->  ( *Met `  X ) 
C_  U. ran  *Met )
119, 10syl 14 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( *Met `  X ) 
C_  U. ran  *Met )
1211sseld 3064 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( D  e.  ( *Met `  X )  ->  D  e.  U. ran  *Met ) )
1312pm2.43i 49 . . 3  |-  ( D  e.  ( *Met `  X )  ->  D  e.  U. ran  *Met )
14 blbas 12508 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  e. 
TopBases )
15 tgcl 12139 . . . 4  |-  ( ran  ( ball `  D
)  e.  TopBases  ->  ( topGen `
 ran  ( ball `  D ) )  e. 
Top )
1614, 15syl 14 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( topGen `
 ran  ( ball `  D ) )  e. 
Top )
172, 5, 13, 16fvmptd3 5480 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( MetOpen
`  D )  =  ( topGen `  ran  ( ball `  D ) ) )
181, 17syl5eq 2160 1  |-  ( D  e.  ( *Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314    e. wcel 1463   _Vcvv 2658    C_ wss 3039   U.cuni 3704   dom cdm 4507   ran crn 4508   Rel wrel 4512   ` cfv 5091   topGenctg 12041   *Metcxmet 12055   ballcbl 12057   MetOpencmopn 12060   Topctop 12070   TopBasesctb 12115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-map 6510  df-sup 6837  df-inf 6838  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-3 8740  df-4 8741  df-n0 8932  df-z 9009  df-uz 9279  df-q 9364  df-rp 9394  df-xneg 9510  df-xadd 9511  df-seqfrec 10170  df-exp 10244  df-cj 10565  df-re 10566  df-im 10567  df-rsqrt 10721  df-abs 10722  df-topgen 12047  df-psmet 12062  df-xmet 12063  df-bl 12065  df-mopn 12066  df-top 12071  df-bases 12116
This theorem is referenced by:  mopntopon  12518  elmopn  12521  blssopn  12560  metss  12569  xmettxlem  12584  xmettx  12585  metcnp3  12586  tgioo  12621
  Copyright terms: Public domain W3C validator