ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudomr Unicode version

Theorem djudomr 7334
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
djudomr  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~<_  ( A B ) )

Proof of Theorem djudomr
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df-inr 7152 . . . . 5  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
21funmpt2 5311 . . . 4  |-  Fun inr
3 simpr 110 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  e.  W )
4 resfunexg 5807 . . . 4  |-  ( ( Fun inr  /\  B  e.  W )  ->  (inr  |`  B )  e.  _V )
52, 3, 4sylancr 414 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inr  |`  B )  e. 
_V )
6 inrresf1 7166 . . 3  |-  (inr  |`  B ) : B -1-1-> ( A B )
7 f1eq1 5478 . . . 4  |-  ( f  =  (inr  |`  B )  ->  ( f : B -1-1-> ( A B )  <-> 
(inr  |`  B ) : B -1-1-> ( A B ) ) )
87spcegv 2861 . . 3  |-  ( (inr  |`  B )  e.  _V  ->  ( (inr  |`  B ) : B -1-1-> ( A B )  ->  E. f 
f : B -1-1-> ( A B ) ) )
95, 6, 8mpisyl 1466 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  E. f  f : B -1-1-> ( A B ) )
10 djuex 7147 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )
11 brdomg 6839 . . 3  |-  ( ( A B )  e.  _V  ->  ( B  ~<_  ( A B )  <->  E. f 
f : B -1-1-> ( A B ) ) )
1210, 11syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  ~<_  ( A B )  <->  E. f 
f : B -1-1-> ( A B ) ) )
139, 12mpbird 167 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~<_  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1515    e. wcel 2176   _Vcvv 2772   <.cop 3636   class class class wbr 4045    |` cres 4678   Fun wfun 5266   -1-1->wf1 5269   1oc1o 6497    ~<_ cdom 6828   ⊔ cdju 7141  inrcinr 7150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1st 6228  df-2nd 6229  df-1o 6504  df-dom 6831  df-dju 7142  df-inr 7152
This theorem is referenced by:  sbthom  16002
  Copyright terms: Public domain W3C validator