Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djudomr | Unicode version |
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
Ref | Expression |
---|---|
djudomr | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 7005 | . . . . 5 inr | |
2 | 1 | funmpt2 5222 | . . . 4 inr |
3 | simpr 109 | . . . 4 | |
4 | resfunexg 5701 | . . . 4 inr inr | |
5 | 2, 3, 4 | sylancr 411 | . . 3 inr |
6 | inrresf1 7019 | . . 3 inr ⊔ | |
7 | f1eq1 5383 | . . . 4 inr ⊔ inr ⊔ | |
8 | 7 | spcegv 2810 | . . 3 inr inr ⊔ ⊔ |
9 | 5, 6, 8 | mpisyl 1433 | . 2 ⊔ |
10 | djuex 7000 | . . 3 ⊔ | |
11 | brdomg 6706 | . . 3 ⊔ ⊔ ⊔ | |
12 | 10, 11 | syl 14 | . 2 ⊔ ⊔ |
13 | 9, 12 | mpbird 166 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1479 wcel 2135 cvv 2722 cop 3574 class class class wbr 3977 cres 4601 wfun 5177 wf1 5180 c1o 6369 cdom 6697 ⊔ cdju 6994 inrcinr 7003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4092 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-tr 4076 df-id 4266 df-iord 4339 df-on 4341 df-suc 4344 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-1st 6101 df-2nd 6102 df-1o 6376 df-dom 6700 df-dju 6995 df-inr 7005 |
This theorem is referenced by: sbthom 13757 |
Copyright terms: Public domain | W3C validator |