ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phicl2 Unicode version

Theorem phicl2 11801
Description: Bounds and closure for the value of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phicl2  |-  ( N  e.  NN  ->  ( phi `  N )  e.  ( 1 ... N
) )

Proof of Theorem phicl2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 phival 11800 . 2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2 phivalfi 11799 . . . . 5  |-  ( N  e.  NN  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin )
3 hashcl 10482 . . . . 5  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  NN0 )
42, 3syl 14 . . . 4  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  NN0 )
54nn0zd 9129 . . 3  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ZZ )
6 1z 9038 . . . . 5  |-  1  e.  ZZ
7 hashsng 10499 . . . . 5  |-  ( 1  e.  ZZ  ->  ( `  { 1 } )  =  1 )
86, 7ax-mp 5 . . . 4  |-  ( `  {
1 } )  =  1
9 eluzfz1 9766 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
10 nnuz 9317 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
119, 10eleq2s 2212 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  ( 1 ... N
) )
12 nnz 9031 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
13 1gcd 11592 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
1  gcd  N )  =  1 )
1412, 13syl 14 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  gcd  N )  =  1 )
15 oveq1 5749 . . . . . . . . . 10  |-  ( x  =  1  ->  (
x  gcd  N )  =  ( 1  gcd 
N ) )
1615eqeq1d 2126 . . . . . . . . 9  |-  ( x  =  1  ->  (
( x  gcd  N
)  =  1  <->  (
1  gcd  N )  =  1 ) )
1716elrab 2813 . . . . . . . 8  |-  ( 1  e.  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  <->  ( 1  e.  ( 1 ... N )  /\  (
1  gcd  N )  =  1 ) )
1811, 14, 17sylanbrc 413 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )
1918snssd 3635 . . . . . 6  |-  ( N  e.  NN  ->  { 1 }  C_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
20 ssdomg 6640 . . . . . 6  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin  ->  ( { 1 }  C_  { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  ->  { 1 }  ~<_  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } ) )
212, 19, 20sylc 62 . . . . 5  |-  ( N  e.  NN  ->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
22 1nn 8695 . . . . . . 7  |-  1  e.  NN
23 snfig 6676 . . . . . . 7  |-  ( 1  e.  NN  ->  { 1 }  e.  Fin )
2422, 23ax-mp 5 . . . . . 6  |-  { 1 }  e.  Fin
25 fihashdom 10504 . . . . . 6  |-  ( ( { 1 }  e.  Fin  /\  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin )  ->  ( ( `  {
1 } )  <_ 
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2624, 2, 25sylancr 410 . . . . 5  |-  ( N  e.  NN  ->  (
( `  { 1 } )  <_  ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  <->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2721, 26mpbird 166 . . . 4  |-  ( N  e.  NN  ->  ( `  { 1 } )  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
288, 27eqbrtrrid 3934 . . 3  |-  ( N  e.  NN  ->  1  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
29 1zzd 9039 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  ZZ )
3029, 12fzfigd 10159 . . . . . 6  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
31 ssrab2 3152 . . . . . 6  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... N )
32 ssdomg 6640 . . . . . 6  |-  ( ( 1 ... N )  e.  Fin  ->  ( { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... N )  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
3330, 31, 32mpisyl 1407 . . . . 5  |-  ( N  e.  NN  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) )
34 fihashdom 10504 . . . . . 6  |-  ( ( { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 }  e.  Fin  /\  (
1 ... N )  e. 
Fin )  ->  (
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( `  ( 1 ... N ) )  <->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
352, 30, 34syl2anc 408 . . . . 5  |-  ( N  e.  NN  ->  (
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( `  ( 1 ... N ) )  <->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
3633, 35mpbird 166 . . . 4  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  <_  ( `  (
1 ... N ) ) )
37 nnnn0 8942 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
38 hashfz1 10484 . . . . 5  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  N )
3937, 38syl 14 . . . 4  |-  ( N  e.  NN  ->  ( `  ( 1 ... N
) )  =  N )
4036, 39breqtrd 3924 . . 3  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  <_  N )
41 elfz1 9750 . . . 4  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  e.  ( 1 ... N )  <->  ( ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ZZ  /\  1  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  /\  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_  N ) ) )
426, 12, 41sylancr 410 . . 3  |-  ( N  e.  NN  ->  (
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e.  ( 1 ... N
)  <->  ( ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  e.  ZZ  /\  1  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  /\  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_  N ) ) )
435, 28, 40, 42mpbir3and 1149 . 2  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ( 1 ... N ) )
441, 43eqeltrd 2194 1  |-  ( N  e.  NN  ->  ( phi `  N )  e.  ( 1 ... N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 947    = wceq 1316    e. wcel 1465   {crab 2397    C_ wss 3041   {csn 3497   class class class wbr 3899   ` cfv 5093  (class class class)co 5742    ~<_ cdom 6601   Fincfn 6602   1c1 7589    <_ cle 7769   NNcn 8684   NN0cn0 8935   ZZcz 9012   ZZ>=cuz 9282   ...cfz 9745  ♯chash 10476    gcd cgcd 11547   phicphi 11797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-1o 6281  df-er 6397  df-en 6603  df-dom 6604  df-fin 6605  df-sup 6839  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400  df-inn 8685  df-2 8743  df-3 8744  df-4 8745  df-n0 8936  df-z 9013  df-uz 9283  df-q 9368  df-rp 9398  df-fz 9746  df-fzo 9875  df-fl 9998  df-mod 10051  df-seqfrec 10174  df-exp 10248  df-ihash 10477  df-cj 10569  df-re 10570  df-im 10571  df-rsqrt 10725  df-abs 10726  df-dvds 11406  df-gcd 11548  df-phi 11798
This theorem is referenced by:  phicl  11802  phi1  11806
  Copyright terms: Public domain W3C validator