ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phicl2 Unicode version

Theorem phicl2 12478
Description: Bounds and closure for the value of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phicl2  |-  ( N  e.  NN  ->  ( phi `  N )  e.  ( 1 ... N
) )

Proof of Theorem phicl2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 phival 12477 . 2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2 phivalfi 12476 . . . . 5  |-  ( N  e.  NN  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin )
3 hashcl 10924 . . . . 5  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  NN0 )
42, 3syl 14 . . . 4  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  NN0 )
54nn0zd 9492 . . 3  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ZZ )
6 1z 9397 . . . . 5  |-  1  e.  ZZ
7 hashsng 10941 . . . . 5  |-  ( 1  e.  ZZ  ->  ( `  { 1 } )  =  1 )
86, 7ax-mp 5 . . . 4  |-  ( `  {
1 } )  =  1
9 eluzfz1 10152 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
10 nnuz 9683 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
119, 10eleq2s 2299 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  ( 1 ... N
) )
12 nnz 9390 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
13 1gcd 12255 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
1  gcd  N )  =  1 )
1412, 13syl 14 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  gcd  N )  =  1 )
15 oveq1 5950 . . . . . . . . . 10  |-  ( x  =  1  ->  (
x  gcd  N )  =  ( 1  gcd 
N ) )
1615eqeq1d 2213 . . . . . . . . 9  |-  ( x  =  1  ->  (
( x  gcd  N
)  =  1  <->  (
1  gcd  N )  =  1 ) )
1716elrab 2928 . . . . . . . 8  |-  ( 1  e.  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  <->  ( 1  e.  ( 1 ... N )  /\  (
1  gcd  N )  =  1 ) )
1811, 14, 17sylanbrc 417 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )
1918snssd 3777 . . . . . 6  |-  ( N  e.  NN  ->  { 1 }  C_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
20 ssdomg 6869 . . . . . 6  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin  ->  ( { 1 }  C_  { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  ->  { 1 }  ~<_  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } ) )
212, 19, 20sylc 62 . . . . 5  |-  ( N  e.  NN  ->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
22 1nn 9046 . . . . . . 7  |-  1  e.  NN
23 snfig 6905 . . . . . . 7  |-  ( 1  e.  NN  ->  { 1 }  e.  Fin )
2422, 23ax-mp 5 . . . . . 6  |-  { 1 }  e.  Fin
25 fihashdom 10946 . . . . . 6  |-  ( ( { 1 }  e.  Fin  /\  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin )  ->  ( ( `  {
1 } )  <_ 
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2624, 2, 25sylancr 414 . . . . 5  |-  ( N  e.  NN  ->  (
( `  { 1 } )  <_  ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  <->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2721, 26mpbird 167 . . . 4  |-  ( N  e.  NN  ->  ( `  { 1 } )  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
288, 27eqbrtrrid 4079 . . 3  |-  ( N  e.  NN  ->  1  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
29 1zzd 9398 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  ZZ )
3029, 12fzfigd 10574 . . . . . 6  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
31 ssrab2 3277 . . . . . 6  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... N )
32 ssdomg 6869 . . . . . 6  |-  ( ( 1 ... N )  e.  Fin  ->  ( { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... N )  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
3330, 31, 32mpisyl 1465 . . . . 5  |-  ( N  e.  NN  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) )
34 fihashdom 10946 . . . . . 6  |-  ( ( { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 }  e.  Fin  /\  (
1 ... N )  e. 
Fin )  ->  (
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( `  ( 1 ... N ) )  <->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
352, 30, 34syl2anc 411 . . . . 5  |-  ( N  e.  NN  ->  (
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( `  ( 1 ... N ) )  <->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
3633, 35mpbird 167 . . . 4  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  <_  ( `  (
1 ... N ) ) )
37 nnnn0 9301 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
38 hashfz1 10926 . . . . 5  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  N )
3937, 38syl 14 . . . 4  |-  ( N  e.  NN  ->  ( `  ( 1 ... N
) )  =  N )
4036, 39breqtrd 4069 . . 3  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  <_  N )
41 elfz1 10134 . . . 4  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  e.  ( 1 ... N )  <->  ( ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ZZ  /\  1  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  /\  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_  N ) ) )
426, 12, 41sylancr 414 . . 3  |-  ( N  e.  NN  ->  (
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e.  ( 1 ... N
)  <->  ( ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  e.  ZZ  /\  1  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  /\  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_  N ) ) )
435, 28, 40, 42mpbir3and 1182 . 2  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ( 1 ... N ) )
441, 43eqeltrd 2281 1  |-  ( N  e.  NN  ->  ( phi `  N )  e.  ( 1 ... N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   {crab 2487    C_ wss 3165   {csn 3632   class class class wbr 4043   ` cfv 5270  (class class class)co 5943    ~<_ cdom 6825   Fincfn 6826   1c1 7925    <_ cle 8107   NNcn 9035   NN0cn0 9294   ZZcz 9371   ZZ>=cuz 9647   ...cfz 10129  ♯chash 10918    gcd cgcd 12216   phicphi 12473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-sup 7085  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-dvds 12041  df-gcd 12217  df-phi 12475
This theorem is referenced by:  phicl  12479  phi1  12483
  Copyright terms: Public domain W3C validator