ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phicl2 Unicode version

Theorem phicl2 11901
Description: Bounds and closure for the value of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phicl2  |-  ( N  e.  NN  ->  ( phi `  N )  e.  ( 1 ... N
) )

Proof of Theorem phicl2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 phival 11900 . 2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2 phivalfi 11899 . . . . 5  |-  ( N  e.  NN  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin )
3 hashcl 10539 . . . . 5  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  NN0 )
42, 3syl 14 . . . 4  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  NN0 )
54nn0zd 9183 . . 3  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ZZ )
6 1z 9092 . . . . 5  |-  1  e.  ZZ
7 hashsng 10556 . . . . 5  |-  ( 1  e.  ZZ  ->  ( `  { 1 } )  =  1 )
86, 7ax-mp 5 . . . 4  |-  ( `  {
1 } )  =  1
9 eluzfz1 9823 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
10 nnuz 9373 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
119, 10eleq2s 2234 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  ( 1 ... N
) )
12 nnz 9085 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
13 1gcd 11691 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
1  gcd  N )  =  1 )
1412, 13syl 14 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  gcd  N )  =  1 )
15 oveq1 5781 . . . . . . . . . 10  |-  ( x  =  1  ->  (
x  gcd  N )  =  ( 1  gcd 
N ) )
1615eqeq1d 2148 . . . . . . . . 9  |-  ( x  =  1  ->  (
( x  gcd  N
)  =  1  <->  (
1  gcd  N )  =  1 ) )
1716elrab 2840 . . . . . . . 8  |-  ( 1  e.  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  <->  ( 1  e.  ( 1 ... N )  /\  (
1  gcd  N )  =  1 ) )
1811, 14, 17sylanbrc 413 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )
1918snssd 3665 . . . . . 6  |-  ( N  e.  NN  ->  { 1 }  C_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
20 ssdomg 6672 . . . . . 6  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin  ->  ( { 1 }  C_  { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  ->  { 1 }  ~<_  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } ) )
212, 19, 20sylc 62 . . . . 5  |-  ( N  e.  NN  ->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
22 1nn 8743 . . . . . . 7  |-  1  e.  NN
23 snfig 6708 . . . . . . 7  |-  ( 1  e.  NN  ->  { 1 }  e.  Fin )
2422, 23ax-mp 5 . . . . . 6  |-  { 1 }  e.  Fin
25 fihashdom 10561 . . . . . 6  |-  ( ( { 1 }  e.  Fin  /\  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin )  ->  ( ( `  {
1 } )  <_ 
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2624, 2, 25sylancr 410 . . . . 5  |-  ( N  e.  NN  ->  (
( `  { 1 } )  <_  ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  <->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2721, 26mpbird 166 . . . 4  |-  ( N  e.  NN  ->  ( `  { 1 } )  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
288, 27eqbrtrrid 3964 . . 3  |-  ( N  e.  NN  ->  1  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
29 1zzd 9093 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  ZZ )
3029, 12fzfigd 10216 . . . . . 6  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
31 ssrab2 3182 . . . . . 6  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... N )
32 ssdomg 6672 . . . . . 6  |-  ( ( 1 ... N )  e.  Fin  ->  ( { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... N )  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
3330, 31, 32mpisyl 1422 . . . . 5  |-  ( N  e.  NN  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) )
34 fihashdom 10561 . . . . . 6  |-  ( ( { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 }  e.  Fin  /\  (
1 ... N )  e. 
Fin )  ->  (
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( `  ( 1 ... N ) )  <->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
352, 30, 34syl2anc 408 . . . . 5  |-  ( N  e.  NN  ->  (
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( `  ( 1 ... N ) )  <->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
3633, 35mpbird 166 . . . 4  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  <_  ( `  (
1 ... N ) ) )
37 nnnn0 8996 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
38 hashfz1 10541 . . . . 5  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  N )
3937, 38syl 14 . . . 4  |-  ( N  e.  NN  ->  ( `  ( 1 ... N
) )  =  N )
4036, 39breqtrd 3954 . . 3  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  <_  N )
41 elfz1 9807 . . . 4  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  e.  ( 1 ... N )  <->  ( ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ZZ  /\  1  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  /\  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_  N ) ) )
426, 12, 41sylancr 410 . . 3  |-  ( N  e.  NN  ->  (
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e.  ( 1 ... N
)  <->  ( ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  e.  ZZ  /\  1  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  /\  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_  N ) ) )
435, 28, 40, 42mpbir3and 1164 . 2  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ( 1 ... N ) )
441, 43eqeltrd 2216 1  |-  ( N  e.  NN  ->  ( phi `  N )  e.  ( 1 ... N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   {crab 2420    C_ wss 3071   {csn 3527   class class class wbr 3929   ` cfv 5123  (class class class)co 5774    ~<_ cdom 6633   Fincfn 6634   1c1 7633    <_ cle 7813   NNcn 8732   NN0cn0 8989   ZZcz 9066   ZZ>=cuz 9338   ...cfz 9802  ♯chash 10533    gcd cgcd 11646   phicphi 11897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-rp 9454  df-fz 9803  df-fzo 9932  df-fl 10055  df-mod 10108  df-seqfrec 10231  df-exp 10305  df-ihash 10534  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-dvds 11505  df-gcd 11647  df-phi 11898
This theorem is referenced by:  phicl  11902  phi1  11906
  Copyright terms: Public domain W3C validator