ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phicl2 Unicode version

Theorem phicl2 12731
Description: Bounds and closure for the value of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phicl2  |-  ( N  e.  NN  ->  ( phi `  N )  e.  ( 1 ... N
) )

Proof of Theorem phicl2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 phival 12730 . 2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2 phivalfi 12729 . . . . 5  |-  ( N  e.  NN  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin )
3 hashcl 10998 . . . . 5  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  NN0 )
42, 3syl 14 . . . 4  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  NN0 )
54nn0zd 9563 . . 3  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ZZ )
6 1z 9468 . . . . 5  |-  1  e.  ZZ
7 hashsng 11015 . . . . 5  |-  ( 1  e.  ZZ  ->  ( `  { 1 } )  =  1 )
86, 7ax-mp 5 . . . 4  |-  ( `  {
1 } )  =  1
9 eluzfz1 10223 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
10 nnuz 9754 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
119, 10eleq2s 2324 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  ( 1 ... N
) )
12 nnz 9461 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
13 1gcd 12508 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
1  gcd  N )  =  1 )
1412, 13syl 14 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  gcd  N )  =  1 )
15 oveq1 6007 . . . . . . . . . 10  |-  ( x  =  1  ->  (
x  gcd  N )  =  ( 1  gcd 
N ) )
1615eqeq1d 2238 . . . . . . . . 9  |-  ( x  =  1  ->  (
( x  gcd  N
)  =  1  <->  (
1  gcd  N )  =  1 ) )
1716elrab 2959 . . . . . . . 8  |-  ( 1  e.  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  <->  ( 1  e.  ( 1 ... N )  /\  (
1  gcd  N )  =  1 ) )
1811, 14, 17sylanbrc 417 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )
1918snssd 3812 . . . . . 6  |-  ( N  e.  NN  ->  { 1 }  C_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
20 ssdomg 6928 . . . . . 6  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin  ->  ( { 1 }  C_  { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  ->  { 1 }  ~<_  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } ) )
212, 19, 20sylc 62 . . . . 5  |-  ( N  e.  NN  ->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
22 1nn 9117 . . . . . . 7  |-  1  e.  NN
23 snfig 6965 . . . . . . 7  |-  ( 1  e.  NN  ->  { 1 }  e.  Fin )
2422, 23ax-mp 5 . . . . . 6  |-  { 1 }  e.  Fin
25 fihashdom 11020 . . . . . 6  |-  ( ( { 1 }  e.  Fin  /\  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin )  ->  ( ( `  {
1 } )  <_ 
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2624, 2, 25sylancr 414 . . . . 5  |-  ( N  e.  NN  ->  (
( `  { 1 } )  <_  ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  <->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2721, 26mpbird 167 . . . 4  |-  ( N  e.  NN  ->  ( `  { 1 } )  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
288, 27eqbrtrrid 4118 . . 3  |-  ( N  e.  NN  ->  1  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
29 1zzd 9469 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  ZZ )
3029, 12fzfigd 10648 . . . . . 6  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
31 ssrab2 3309 . . . . . 6  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... N )
32 ssdomg 6928 . . . . . 6  |-  ( ( 1 ... N )  e.  Fin  ->  ( { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... N )  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
3330, 31, 32mpisyl 1489 . . . . 5  |-  ( N  e.  NN  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) )
34 fihashdom 11020 . . . . . 6  |-  ( ( { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 }  e.  Fin  /\  (
1 ... N )  e. 
Fin )  ->  (
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( `  ( 1 ... N ) )  <->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
352, 30, 34syl2anc 411 . . . . 5  |-  ( N  e.  NN  ->  (
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( `  ( 1 ... N ) )  <->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
3633, 35mpbird 167 . . . 4  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  <_  ( `  (
1 ... N ) ) )
37 nnnn0 9372 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
38 hashfz1 11000 . . . . 5  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  N )
3937, 38syl 14 . . . 4  |-  ( N  e.  NN  ->  ( `  ( 1 ... N
) )  =  N )
4036, 39breqtrd 4108 . . 3  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  <_  N )
41 elfz1 10205 . . . 4  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  e.  ( 1 ... N )  <->  ( ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ZZ  /\  1  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  /\  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_  N ) ) )
426, 12, 41sylancr 414 . . 3  |-  ( N  e.  NN  ->  (
( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e.  ( 1 ... N
)  <->  ( ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  e.  ZZ  /\  1  <_  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  /\  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_  N ) ) )
435, 28, 40, 42mpbir3and 1204 . 2  |-  ( N  e.  NN  ->  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ( 1 ... N ) )
441, 43eqeltrd 2306 1  |-  ( N  e.  NN  ->  ( phi `  N )  e.  ( 1 ... N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   {crab 2512    C_ wss 3197   {csn 3666   class class class wbr 4082   ` cfv 5317  (class class class)co 6000    ~<_ cdom 6884   Fincfn 6885   1c1 7996    <_ cle 8178   NNcn 9106   NN0cn0 9365   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200  ♯chash 10992    gcd cgcd 12469   phicphi 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470  df-phi 12728
This theorem is referenced by:  phicl  12732  phi1  12736
  Copyright terms: Public domain W3C validator