ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvct Unicode version

Theorem cnvct 6775
Description: If a set is dominated by  om, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
cnvct  |-  ( A  ~<_  om  ->  `' A  ~<_  om )

Proof of Theorem cnvct
StepHypRef Expression
1 relcnv 4982 . . . 4  |-  Rel  `' A
2 ctex 6719 . . . . 5  |-  ( A  ~<_  om  ->  A  e.  _V )
3 cnvexg 5141 . . . . 5  |-  ( A  e.  _V  ->  `' A  e.  _V )
42, 3syl 14 . . . 4  |-  ( A  ~<_  om  ->  `' A  e.  _V )
5 cnven 6774 . . . 4  |-  ( ( Rel  `' A  /\  `' A  e.  _V )  ->  `' A  ~~  `' `' A )
61, 4, 5sylancr 411 . . 3  |-  ( A  ~<_  om  ->  `' A  ~~  `' `' A )
7 cnvcnvss 5058 . . . 4  |-  `' `' A  C_  A
8 ssdomg 6744 . . . 4  |-  ( A  e.  _V  ->  ( `' `' A  C_  A  ->  `' `' A  ~<_  A )
)
92, 7, 8mpisyl 1434 . . 3  |-  ( A  ~<_  om  ->  `' `' A  ~<_  A )
10 endomtr 6756 . . 3  |-  ( ( `' A  ~~  `' `' A  /\  `' `' A  ~<_  A )  ->  `' A  ~<_  A )
116, 9, 10syl2anc 409 . 2  |-  ( A  ~<_  om  ->  `' A  ~<_  A )
12 domtr 6751 . 2  |-  ( ( `' A  ~<_  A  /\  A  ~<_  om )  ->  `' A  ~<_  om )
1311, 12mpancom 419 1  |-  ( A  ~<_  om  ->  `' A  ~<_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   _Vcvv 2726    C_ wss 3116   class class class wbr 3982   omcom 4567   `'ccnv 4603   Rel wrel 4609    ~~ cen 6704    ~<_ cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-en 6707  df-dom 6708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator