ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvct Unicode version

Theorem cnvct 6865
Description: If a set is dominated by  om, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
cnvct  |-  ( A  ~<_  om  ->  `' A  ~<_  om )

Proof of Theorem cnvct
StepHypRef Expression
1 relcnv 5044 . . . 4  |-  Rel  `' A
2 ctex 6809 . . . . 5  |-  ( A  ~<_  om  ->  A  e.  _V )
3 cnvexg 5204 . . . . 5  |-  ( A  e.  _V  ->  `' A  e.  _V )
42, 3syl 14 . . . 4  |-  ( A  ~<_  om  ->  `' A  e.  _V )
5 cnven 6864 . . . 4  |-  ( ( Rel  `' A  /\  `' A  e.  _V )  ->  `' A  ~~  `' `' A )
61, 4, 5sylancr 414 . . 3  |-  ( A  ~<_  om  ->  `' A  ~~  `' `' A )
7 cnvcnvss 5121 . . . 4  |-  `' `' A  C_  A
8 ssdomg 6834 . . . 4  |-  ( A  e.  _V  ->  ( `' `' A  C_  A  ->  `' `' A  ~<_  A )
)
92, 7, 8mpisyl 1457 . . 3  |-  ( A  ~<_  om  ->  `' `' A  ~<_  A )
10 endomtr 6846 . . 3  |-  ( ( `' A  ~~  `' `' A  /\  `' `' A  ~<_  A )  ->  `' A  ~<_  A )
116, 9, 10syl2anc 411 . 2  |-  ( A  ~<_  om  ->  `' A  ~<_  A )
12 domtr 6841 . 2  |-  ( ( `' A  ~<_  A  /\  A  ~<_  om )  ->  `' A  ~<_  om )
1311, 12mpancom 422 1  |-  ( A  ~<_  om  ->  `' A  ~<_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   _Vcvv 2760    C_ wss 3154   class class class wbr 4030   omcom 4623   `'ccnv 4659   Rel wrel 4665    ~~ cen 6794    ~<_ cdom 6795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-en 6797  df-dom 6798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator