ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordiso Unicode version

Theorem ordiso 7009
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ordiso  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  <->  E. f  f  Isom  _E  ,  _E  ( A ,  B ) ) )
Distinct variable groups:    A, f    B, f

Proof of Theorem ordiso
StepHypRef Expression
1 resiexg 4934 . . . . 5  |-  ( A  e.  On  ->  (  _I  |`  A )  e. 
_V )
2 isoid 5786 . . . . 5  |-  (  _I  |`  A )  Isom  _E  ,  _E  ( A ,  A
)
3 isoeq1 5777 . . . . . 6  |-  ( f  =  (  _I  |`  A )  ->  ( f  Isom  _E  ,  _E  ( A ,  A )  <->  (  _I  |`  A )  Isom  _E  ,  _E  ( A ,  A
) ) )
43spcegv 2818 . . . . 5  |-  ( (  _I  |`  A )  e.  _V  ->  ( (  _I  |`  A )  Isom  _E  ,  _E  ( A ,  A )  ->  E. f  f  Isom  _E  ,  _E  ( A ,  A ) ) )
51, 2, 4mpisyl 1439 . . . 4  |-  ( A  e.  On  ->  E. f 
f  Isom  _E  ,  _E  ( A ,  A ) )
65adantr 274 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  E. f  f  Isom  _E  ,  _E  ( A ,  A ) )
7 isoeq5 5781 . . . 4  |-  ( A  =  B  ->  (
f  Isom  _E  ,  _E  ( A ,  A )  <-> 
f  Isom  _E  ,  _E  ( A ,  B ) ) )
87exbidv 1818 . . 3  |-  ( A  =  B  ->  ( E. f  f  Isom  _E  ,  _E  ( A ,  A )  <->  E. f 
f  Isom  _E  ,  _E  ( A ,  B ) ) )
96, 8syl5ibcom 154 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  ->  E. f  f  Isom  _E  ,  _E  ( A ,  B ) ) )
10 eloni 4358 . . . 4  |-  ( A  e.  On  ->  Ord  A )
11 eloni 4358 . . . 4  |-  ( B  e.  On  ->  Ord  B )
12 ordiso2 7008 . . . . . 6  |-  ( ( f  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  A  =  B )
13123coml 1205 . . . . 5  |-  ( ( Ord  A  /\  Ord  B  /\  f  Isom  _E  ,  _E  ( A ,  B
) )  ->  A  =  B )
14133expia 1200 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( f  Isom  _E  ,  _E  ( A ,  B )  ->  A  =  B ) )
1510, 11, 14syl2an 287 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( f  Isom  _E  ,  _E  ( A ,  B
)  ->  A  =  B ) )
1615exlimdv 1812 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f  f 
Isom  _E  ,  _E  ( A ,  B )  ->  A  =  B ) )
179, 16impbid 128 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  <->  E. f  f  Isom  _E  ,  _E  ( A ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730    _E cep 4270    _I cid 4271   Ord word 4345   Oncon0 4346    |` cres 4611    Isom wiso 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-iord 4349  df-on 4351  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator