ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordiso Unicode version

Theorem ordiso 7102
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ordiso  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  <->  E. f  f  Isom  _E  ,  _E  ( A ,  B ) ) )
Distinct variable groups:    A, f    B, f

Proof of Theorem ordiso
StepHypRef Expression
1 resiexg 4991 . . . . 5  |-  ( A  e.  On  ->  (  _I  |`  A )  e. 
_V )
2 isoid 5857 . . . . 5  |-  (  _I  |`  A )  Isom  _E  ,  _E  ( A ,  A
)
3 isoeq1 5848 . . . . . 6  |-  ( f  =  (  _I  |`  A )  ->  ( f  Isom  _E  ,  _E  ( A ,  A )  <->  (  _I  |`  A )  Isom  _E  ,  _E  ( A ,  A
) ) )
43spcegv 2852 . . . . 5  |-  ( (  _I  |`  A )  e.  _V  ->  ( (  _I  |`  A )  Isom  _E  ,  _E  ( A ,  A )  ->  E. f  f  Isom  _E  ,  _E  ( A ,  A ) ) )
51, 2, 4mpisyl 1457 . . . 4  |-  ( A  e.  On  ->  E. f 
f  Isom  _E  ,  _E  ( A ,  A ) )
65adantr 276 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  E. f  f  Isom  _E  ,  _E  ( A ,  A ) )
7 isoeq5 5852 . . . 4  |-  ( A  =  B  ->  (
f  Isom  _E  ,  _E  ( A ,  A )  <-> 
f  Isom  _E  ,  _E  ( A ,  B ) ) )
87exbidv 1839 . . 3  |-  ( A  =  B  ->  ( E. f  f  Isom  _E  ,  _E  ( A ,  A )  <->  E. f 
f  Isom  _E  ,  _E  ( A ,  B ) ) )
96, 8syl5ibcom 155 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  ->  E. f  f  Isom  _E  ,  _E  ( A ,  B ) ) )
10 eloni 4410 . . . 4  |-  ( A  e.  On  ->  Ord  A )
11 eloni 4410 . . . 4  |-  ( B  e.  On  ->  Ord  B )
12 ordiso2 7101 . . . . . 6  |-  ( ( f  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  A  =  B )
13123coml 1212 . . . . 5  |-  ( ( Ord  A  /\  Ord  B  /\  f  Isom  _E  ,  _E  ( A ,  B
) )  ->  A  =  B )
14133expia 1207 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( f  Isom  _E  ,  _E  ( A ,  B )  ->  A  =  B ) )
1510, 11, 14syl2an 289 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( f  Isom  _E  ,  _E  ( A ,  B
)  ->  A  =  B ) )
1615exlimdv 1833 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f  f 
Isom  _E  ,  _E  ( A ,  B )  ->  A  =  B ) )
179, 16impbid 129 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  <->  E. f  f  Isom  _E  ,  _E  ( A ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763    _E cep 4322    _I cid 4323   Ord word 4397   Oncon0 4398    |` cres 4665    Isom wiso 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-iord 4401  df-on 4403  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator