ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordiso Unicode version

Theorem ordiso 6929
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ordiso  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  <->  E. f  f  Isom  _E  ,  _E  ( A ,  B ) ) )
Distinct variable groups:    A, f    B, f

Proof of Theorem ordiso
StepHypRef Expression
1 resiexg 4872 . . . . 5  |-  ( A  e.  On  ->  (  _I  |`  A )  e. 
_V )
2 isoid 5719 . . . . 5  |-  (  _I  |`  A )  Isom  _E  ,  _E  ( A ,  A
)
3 isoeq1 5710 . . . . . 6  |-  ( f  =  (  _I  |`  A )  ->  ( f  Isom  _E  ,  _E  ( A ,  A )  <->  (  _I  |`  A )  Isom  _E  ,  _E  ( A ,  A
) ) )
43spcegv 2777 . . . . 5  |-  ( (  _I  |`  A )  e.  _V  ->  ( (  _I  |`  A )  Isom  _E  ,  _E  ( A ,  A )  ->  E. f  f  Isom  _E  ,  _E  ( A ,  A ) ) )
51, 2, 4mpisyl 1423 . . . 4  |-  ( A  e.  On  ->  E. f 
f  Isom  _E  ,  _E  ( A ,  A ) )
65adantr 274 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  E. f  f  Isom  _E  ,  _E  ( A ,  A ) )
7 isoeq5 5714 . . . 4  |-  ( A  =  B  ->  (
f  Isom  _E  ,  _E  ( A ,  A )  <-> 
f  Isom  _E  ,  _E  ( A ,  B ) ) )
87exbidv 1798 . . 3  |-  ( A  =  B  ->  ( E. f  f  Isom  _E  ,  _E  ( A ,  A )  <->  E. f 
f  Isom  _E  ,  _E  ( A ,  B ) ) )
96, 8syl5ibcom 154 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  ->  E. f  f  Isom  _E  ,  _E  ( A ,  B ) ) )
10 eloni 4305 . . . 4  |-  ( A  e.  On  ->  Ord  A )
11 eloni 4305 . . . 4  |-  ( B  e.  On  ->  Ord  B )
12 ordiso2 6928 . . . . . 6  |-  ( ( f  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  A  =  B )
13123coml 1189 . . . . 5  |-  ( ( Ord  A  /\  Ord  B  /\  f  Isom  _E  ,  _E  ( A ,  B
) )  ->  A  =  B )
14133expia 1184 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( f  Isom  _E  ,  _E  ( A ,  B )  ->  A  =  B ) )
1510, 11, 14syl2an 287 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( f  Isom  _E  ,  _E  ( A ,  B
)  ->  A  =  B ) )
1615exlimdv 1792 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f  f 
Isom  _E  ,  _E  ( A ,  B )  ->  A  =  B ) )
179, 16impbid 128 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  <->  E. f  f  Isom  _E  ,  _E  ( A ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 1481   _Vcvv 2689    _E cep 4217    _I cid 4218   Ord word 4292   Oncon0 4293    |` cres 4549    Isom wiso 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-iord 4296  df-on 4298  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator