Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordiso | Unicode version |
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ordiso |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resiexg 4929 | . . . . 5 | |
2 | isoid 5778 | . . . . 5 | |
3 | isoeq1 5769 | . . . . . 6 | |
4 | 3 | spcegv 2814 | . . . . 5 |
5 | 1, 2, 4 | mpisyl 1434 | . . . 4 |
6 | 5 | adantr 274 | . . 3 |
7 | isoeq5 5773 | . . . 4 | |
8 | 7 | exbidv 1813 | . . 3 |
9 | 6, 8 | syl5ibcom 154 | . 2 |
10 | eloni 4353 | . . . 4 | |
11 | eloni 4353 | . . . 4 | |
12 | ordiso2 7000 | . . . . . 6 | |
13 | 12 | 3coml 1200 | . . . . 5 |
14 | 13 | 3expia 1195 | . . . 4 |
15 | 10, 11, 14 | syl2an 287 | . . 3 |
16 | 15 | exlimdv 1807 | . 2 |
17 | 9, 16 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 cep 4265 cid 4266 word 4340 con0 4341 cres 4606 wiso 5189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-iord 4344 df-on 4346 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |