ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftcnv Unicode version

Theorem fliftcnv 5887
Description: Converse of the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftcnv  |-  ( ph  ->  `' F  =  ran  ( x  e.  X  |-> 
<. B ,  A >. ) )
Distinct variable groups:    x, R    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftcnv
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . . . 5  |-  ran  (
x  e.  X  |->  <. B ,  A >. )  =  ran  ( x  e.  X  |->  <. B ,  A >. )
2 flift.3 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
3 flift.2 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
41, 2, 3fliftrel 5884 . . . 4  |-  ( ph  ->  ran  ( x  e.  X  |->  <. B ,  A >. )  C_  ( S  X.  R ) )
5 relxp 4802 . . . 4  |-  Rel  ( S  X.  R )
6 relss 4780 . . . 4  |-  ( ran  ( x  e.  X  |-> 
<. B ,  A >. ) 
C_  ( S  X.  R )  ->  ( Rel  ( S  X.  R
)  ->  Rel  ran  (
x  e.  X  |->  <. B ,  A >. ) ) )
74, 5, 6mpisyl 1467 . . 3  |-  ( ph  ->  Rel  ran  ( x  e.  X  |->  <. B ,  A >. ) )
8 relcnv 5079 . . 3  |-  Rel  `' F
97, 8jctil 312 . 2  |-  ( ph  ->  ( Rel  `' F  /\  Rel  ran  ( x  e.  X  |->  <. B ,  A >. ) ) )
10 flift.1 . . . . . . 7  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
1110, 3, 2fliftel 5885 . . . . . 6  |-  ( ph  ->  ( z F y  <->  E. x  e.  X  ( z  =  A  /\  y  =  B ) ) )
12 vex 2779 . . . . . . 7  |-  y  e. 
_V
13 vex 2779 . . . . . . 7  |-  z  e. 
_V
1412, 13brcnv 4879 . . . . . 6  |-  ( y `' F z  <->  z F
y )
15 ancom 266 . . . . . . 7  |-  ( ( y  =  B  /\  z  =  A )  <->  ( z  =  A  /\  y  =  B )
)
1615rexbii 2515 . . . . . 6  |-  ( E. x  e.  X  ( y  =  B  /\  z  =  A )  <->  E. x  e.  X  ( z  =  A  /\  y  =  B )
)
1711, 14, 163bitr4g 223 . . . . 5  |-  ( ph  ->  ( y `' F
z  <->  E. x  e.  X  ( y  =  B  /\  z  =  A ) ) )
181, 2, 3fliftel 5885 . . . . 5  |-  ( ph  ->  ( y ran  (
x  e.  X  |->  <. B ,  A >. ) z  <->  E. x  e.  X  ( y  =  B  /\  z  =  A ) ) )
1917, 18bitr4d 191 . . . 4  |-  ( ph  ->  ( y `' F
z  <->  y ran  (
x  e.  X  |->  <. B ,  A >. ) z ) )
20 df-br 4060 . . . 4  |-  ( y `' F z  <->  <. y ,  z >.  e.  `' F )
21 df-br 4060 . . . 4  |-  ( y ran  ( x  e.  X  |->  <. B ,  A >. ) z  <->  <. y ,  z >.  e.  ran  ( x  e.  X  |-> 
<. B ,  A >. ) )
2219, 20, 213bitr3g 222 . . 3  |-  ( ph  ->  ( <. y ,  z
>.  e.  `' F  <->  <. y ,  z >.  e.  ran  ( x  e.  X  |-> 
<. B ,  A >. ) ) )
2322eqrelrdv2 4792 . 2  |-  ( ( ( Rel  `' F  /\  Rel  ran  ( x  e.  X  |->  <. B ,  A >. ) )  /\  ph )  ->  `' F  =  ran  ( x  e.  X  |->  <. B ,  A >. ) )
249, 23mpancom 422 1  |-  ( ph  ->  `' F  =  ran  ( x  e.  X  |-> 
<. B ,  A >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   E.wrex 2487    C_ wss 3174   <.cop 3646   class class class wbr 4059    |-> cmpt 4121    X. cxp 4691   `'ccnv 4692   ran crn 4694   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator