ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftcnv Unicode version

Theorem fliftcnv 5774
Description: Converse of the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftcnv  |-  ( ph  ->  `' F  =  ran  ( x  e.  X  |-> 
<. B ,  A >. ) )
Distinct variable groups:    x, R    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftcnv
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . . . . 5  |-  ran  (
x  e.  X  |->  <. B ,  A >. )  =  ran  ( x  e.  X  |->  <. B ,  A >. )
2 flift.3 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
3 flift.2 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
41, 2, 3fliftrel 5771 . . . 4  |-  ( ph  ->  ran  ( x  e.  X  |->  <. B ,  A >. )  C_  ( S  X.  R ) )
5 relxp 4720 . . . 4  |-  Rel  ( S  X.  R )
6 relss 4698 . . . 4  |-  ( ran  ( x  e.  X  |-> 
<. B ,  A >. ) 
C_  ( S  X.  R )  ->  ( Rel  ( S  X.  R
)  ->  Rel  ran  (
x  e.  X  |->  <. B ,  A >. ) ) )
74, 5, 6mpisyl 1439 . . 3  |-  ( ph  ->  Rel  ran  ( x  e.  X  |->  <. B ,  A >. ) )
8 relcnv 4989 . . 3  |-  Rel  `' F
97, 8jctil 310 . 2  |-  ( ph  ->  ( Rel  `' F  /\  Rel  ran  ( x  e.  X  |->  <. B ,  A >. ) ) )
10 flift.1 . . . . . . 7  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
1110, 3, 2fliftel 5772 . . . . . 6  |-  ( ph  ->  ( z F y  <->  E. x  e.  X  ( z  =  A  /\  y  =  B ) ) )
12 vex 2733 . . . . . . 7  |-  y  e. 
_V
13 vex 2733 . . . . . . 7  |-  z  e. 
_V
1412, 13brcnv 4794 . . . . . 6  |-  ( y `' F z  <->  z F
y )
15 ancom 264 . . . . . . 7  |-  ( ( y  =  B  /\  z  =  A )  <->  ( z  =  A  /\  y  =  B )
)
1615rexbii 2477 . . . . . 6  |-  ( E. x  e.  X  ( y  =  B  /\  z  =  A )  <->  E. x  e.  X  ( z  =  A  /\  y  =  B )
)
1711, 14, 163bitr4g 222 . . . . 5  |-  ( ph  ->  ( y `' F
z  <->  E. x  e.  X  ( y  =  B  /\  z  =  A ) ) )
181, 2, 3fliftel 5772 . . . . 5  |-  ( ph  ->  ( y ran  (
x  e.  X  |->  <. B ,  A >. ) z  <->  E. x  e.  X  ( y  =  B  /\  z  =  A ) ) )
1917, 18bitr4d 190 . . . 4  |-  ( ph  ->  ( y `' F
z  <->  y ran  (
x  e.  X  |->  <. B ,  A >. ) z ) )
20 df-br 3990 . . . 4  |-  ( y `' F z  <->  <. y ,  z >.  e.  `' F )
21 df-br 3990 . . . 4  |-  ( y ran  ( x  e.  X  |->  <. B ,  A >. ) z  <->  <. y ,  z >.  e.  ran  ( x  e.  X  |-> 
<. B ,  A >. ) )
2219, 20, 213bitr3g 221 . . 3  |-  ( ph  ->  ( <. y ,  z
>.  e.  `' F  <->  <. y ,  z >.  e.  ran  ( x  e.  X  |-> 
<. B ,  A >. ) ) )
2322eqrelrdv2 4710 . 2  |-  ( ( ( Rel  `' F  /\  Rel  ran  ( x  e.  X  |->  <. B ,  A >. ) )  /\  ph )  ->  `' F  =  ran  ( x  e.  X  |->  <. B ,  A >. ) )
249, 23mpancom 420 1  |-  ( ph  ->  `' F  =  ran  ( x  e.  X  |-> 
<. B ,  A >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   E.wrex 2449    C_ wss 3121   <.cop 3586   class class class wbr 3989    |-> cmpt 4050    X. cxp 4609   `'ccnv 4610   ran crn 4612   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator