ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftcnv Unicode version

Theorem fliftcnv 5866
Description: Converse of the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftcnv  |-  ( ph  ->  `' F  =  ran  ( x  e.  X  |-> 
<. B ,  A >. ) )
Distinct variable groups:    x, R    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftcnv
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . . . 5  |-  ran  (
x  e.  X  |->  <. B ,  A >. )  =  ran  ( x  e.  X  |->  <. B ,  A >. )
2 flift.3 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
3 flift.2 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
41, 2, 3fliftrel 5863 . . . 4  |-  ( ph  ->  ran  ( x  e.  X  |->  <. B ,  A >. )  C_  ( S  X.  R ) )
5 relxp 4785 . . . 4  |-  Rel  ( S  X.  R )
6 relss 4763 . . . 4  |-  ( ran  ( x  e.  X  |-> 
<. B ,  A >. ) 
C_  ( S  X.  R )  ->  ( Rel  ( S  X.  R
)  ->  Rel  ran  (
x  e.  X  |->  <. B ,  A >. ) ) )
74, 5, 6mpisyl 1466 . . 3  |-  ( ph  ->  Rel  ran  ( x  e.  X  |->  <. B ,  A >. ) )
8 relcnv 5061 . . 3  |-  Rel  `' F
97, 8jctil 312 . 2  |-  ( ph  ->  ( Rel  `' F  /\  Rel  ran  ( x  e.  X  |->  <. B ,  A >. ) ) )
10 flift.1 . . . . . . 7  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
1110, 3, 2fliftel 5864 . . . . . 6  |-  ( ph  ->  ( z F y  <->  E. x  e.  X  ( z  =  A  /\  y  =  B ) ) )
12 vex 2775 . . . . . . 7  |-  y  e. 
_V
13 vex 2775 . . . . . . 7  |-  z  e. 
_V
1412, 13brcnv 4862 . . . . . 6  |-  ( y `' F z  <->  z F
y )
15 ancom 266 . . . . . . 7  |-  ( ( y  =  B  /\  z  =  A )  <->  ( z  =  A  /\  y  =  B )
)
1615rexbii 2513 . . . . . 6  |-  ( E. x  e.  X  ( y  =  B  /\  z  =  A )  <->  E. x  e.  X  ( z  =  A  /\  y  =  B )
)
1711, 14, 163bitr4g 223 . . . . 5  |-  ( ph  ->  ( y `' F
z  <->  E. x  e.  X  ( y  =  B  /\  z  =  A ) ) )
181, 2, 3fliftel 5864 . . . . 5  |-  ( ph  ->  ( y ran  (
x  e.  X  |->  <. B ,  A >. ) z  <->  E. x  e.  X  ( y  =  B  /\  z  =  A ) ) )
1917, 18bitr4d 191 . . . 4  |-  ( ph  ->  ( y `' F
z  <->  y ran  (
x  e.  X  |->  <. B ,  A >. ) z ) )
20 df-br 4046 . . . 4  |-  ( y `' F z  <->  <. y ,  z >.  e.  `' F )
21 df-br 4046 . . . 4  |-  ( y ran  ( x  e.  X  |->  <. B ,  A >. ) z  <->  <. y ,  z >.  e.  ran  ( x  e.  X  |-> 
<. B ,  A >. ) )
2219, 20, 213bitr3g 222 . . 3  |-  ( ph  ->  ( <. y ,  z
>.  e.  `' F  <->  <. y ,  z >.  e.  ran  ( x  e.  X  |-> 
<. B ,  A >. ) ) )
2322eqrelrdv2 4775 . 2  |-  ( ( ( Rel  `' F  /\  Rel  ran  ( x  e.  X  |->  <. B ,  A >. ) )  /\  ph )  ->  `' F  =  ran  ( x  e.  X  |->  <. B ,  A >. ) )
249, 23mpancom 422 1  |-  ( ph  ->  `' F  =  ran  ( x  e.  X  |-> 
<. B ,  A >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   E.wrex 2485    C_ wss 3166   <.cop 3636   class class class wbr 4045    |-> cmpt 4106    X. cxp 4674   `'ccnv 4675   ran crn 4677   Rel wrel 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator