ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftcnv Unicode version

Theorem fliftcnv 5689
Description: Converse of the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftcnv  |-  ( ph  ->  `' F  =  ran  ( x  e.  X  |-> 
<. B ,  A >. ) )
Distinct variable groups:    x, R    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftcnv
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2137 . . . . 5  |-  ran  (
x  e.  X  |->  <. B ,  A >. )  =  ran  ( x  e.  X  |->  <. B ,  A >. )
2 flift.3 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
3 flift.2 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
41, 2, 3fliftrel 5686 . . . 4  |-  ( ph  ->  ran  ( x  e.  X  |->  <. B ,  A >. )  C_  ( S  X.  R ) )
5 relxp 4643 . . . 4  |-  Rel  ( S  X.  R )
6 relss 4621 . . . 4  |-  ( ran  ( x  e.  X  |-> 
<. B ,  A >. ) 
C_  ( S  X.  R )  ->  ( Rel  ( S  X.  R
)  ->  Rel  ran  (
x  e.  X  |->  <. B ,  A >. ) ) )
74, 5, 6mpisyl 1422 . . 3  |-  ( ph  ->  Rel  ran  ( x  e.  X  |->  <. B ,  A >. ) )
8 relcnv 4912 . . 3  |-  Rel  `' F
97, 8jctil 310 . 2  |-  ( ph  ->  ( Rel  `' F  /\  Rel  ran  ( x  e.  X  |->  <. B ,  A >. ) ) )
10 flift.1 . . . . . . 7  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
1110, 3, 2fliftel 5687 . . . . . 6  |-  ( ph  ->  ( z F y  <->  E. x  e.  X  ( z  =  A  /\  y  =  B ) ) )
12 vex 2684 . . . . . . 7  |-  y  e. 
_V
13 vex 2684 . . . . . . 7  |-  z  e. 
_V
1412, 13brcnv 4717 . . . . . 6  |-  ( y `' F z  <->  z F
y )
15 ancom 264 . . . . . . 7  |-  ( ( y  =  B  /\  z  =  A )  <->  ( z  =  A  /\  y  =  B )
)
1615rexbii 2440 . . . . . 6  |-  ( E. x  e.  X  ( y  =  B  /\  z  =  A )  <->  E. x  e.  X  ( z  =  A  /\  y  =  B )
)
1711, 14, 163bitr4g 222 . . . . 5  |-  ( ph  ->  ( y `' F
z  <->  E. x  e.  X  ( y  =  B  /\  z  =  A ) ) )
181, 2, 3fliftel 5687 . . . . 5  |-  ( ph  ->  ( y ran  (
x  e.  X  |->  <. B ,  A >. ) z  <->  E. x  e.  X  ( y  =  B  /\  z  =  A ) ) )
1917, 18bitr4d 190 . . . 4  |-  ( ph  ->  ( y `' F
z  <->  y ran  (
x  e.  X  |->  <. B ,  A >. ) z ) )
20 df-br 3925 . . . 4  |-  ( y `' F z  <->  <. y ,  z >.  e.  `' F )
21 df-br 3925 . . . 4  |-  ( y ran  ( x  e.  X  |->  <. B ,  A >. ) z  <->  <. y ,  z >.  e.  ran  ( x  e.  X  |-> 
<. B ,  A >. ) )
2219, 20, 213bitr3g 221 . . 3  |-  ( ph  ->  ( <. y ,  z
>.  e.  `' F  <->  <. y ,  z >.  e.  ran  ( x  e.  X  |-> 
<. B ,  A >. ) ) )
2322eqrelrdv2 4633 . 2  |-  ( ( ( Rel  `' F  /\  Rel  ran  ( x  e.  X  |->  <. B ,  A >. ) )  /\  ph )  ->  `' F  =  ran  ( x  e.  X  |->  <. B ,  A >. ) )
249, 23mpancom 418 1  |-  ( ph  ->  `' F  =  ran  ( x  e.  X  |-> 
<. B ,  A >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   E.wrex 2415    C_ wss 3066   <.cop 3525   class class class wbr 3924    |-> cmpt 3984    X. cxp 4532   `'ccnv 4533   ran crn 4535   Rel wrel 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator