| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fliftcnv | Unicode version | ||
| Description: Converse of the relation
|
| Ref | Expression |
|---|---|
| flift.1 |
|
| flift.2 |
|
| flift.3 |
|
| Ref | Expression |
|---|---|
| fliftcnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . . . 5
| |
| 2 | flift.3 |
. . . . 5
| |
| 3 | flift.2 |
. . . . 5
| |
| 4 | 1, 2, 3 | fliftrel 5863 |
. . . 4
|
| 5 | relxp 4785 |
. . . 4
| |
| 6 | relss 4763 |
. . . 4
| |
| 7 | 4, 5, 6 | mpisyl 1466 |
. . 3
|
| 8 | relcnv 5061 |
. . 3
| |
| 9 | 7, 8 | jctil 312 |
. 2
|
| 10 | flift.1 |
. . . . . . 7
| |
| 11 | 10, 3, 2 | fliftel 5864 |
. . . . . 6
|
| 12 | vex 2775 |
. . . . . . 7
| |
| 13 | vex 2775 |
. . . . . . 7
| |
| 14 | 12, 13 | brcnv 4862 |
. . . . . 6
|
| 15 | ancom 266 |
. . . . . . 7
| |
| 16 | 15 | rexbii 2513 |
. . . . . 6
|
| 17 | 11, 14, 16 | 3bitr4g 223 |
. . . . 5
|
| 18 | 1, 2, 3 | fliftel 5864 |
. . . . 5
|
| 19 | 17, 18 | bitr4d 191 |
. . . 4
|
| 20 | df-br 4046 |
. . . 4
| |
| 21 | df-br 4046 |
. . . 4
| |
| 22 | 19, 20, 21 | 3bitr3g 222 |
. . 3
|
| 23 | 22 | eqrelrdv2 4775 |
. 2
|
| 24 | 9, 23 | mpancom 422 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |