Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fliftcnv | Unicode version |
Description: Converse of the relation . (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | |
flift.2 | |
flift.3 |
Ref | Expression |
---|---|
fliftcnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . . . . 5 | |
2 | flift.3 | . . . . 5 | |
3 | flift.2 | . . . . 5 | |
4 | 1, 2, 3 | fliftrel 5771 | . . . 4 |
5 | relxp 4720 | . . . 4 | |
6 | relss 4698 | . . . 4 | |
7 | 4, 5, 6 | mpisyl 1439 | . . 3 |
8 | relcnv 4989 | . . 3 | |
9 | 7, 8 | jctil 310 | . 2 |
10 | flift.1 | . . . . . . 7 | |
11 | 10, 3, 2 | fliftel 5772 | . . . . . 6 |
12 | vex 2733 | . . . . . . 7 | |
13 | vex 2733 | . . . . . . 7 | |
14 | 12, 13 | brcnv 4794 | . . . . . 6 |
15 | ancom 264 | . . . . . . 7 | |
16 | 15 | rexbii 2477 | . . . . . 6 |
17 | 11, 14, 16 | 3bitr4g 222 | . . . . 5 |
18 | 1, 2, 3 | fliftel 5772 | . . . . 5 |
19 | 17, 18 | bitr4d 190 | . . . 4 |
20 | df-br 3990 | . . . 4 | |
21 | df-br 3990 | . . . 4 | |
22 | 19, 20, 21 | 3bitr3g 221 | . . 3 |
23 | 22 | eqrelrdv2 4710 | . 2 |
24 | 9, 23 | mpancom 420 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wrex 2449 wss 3121 cop 3586 class class class wbr 3989 cmpt 4050 cxp 4609 ccnv 4610 crn 4612 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |