| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strsetsid | Unicode version | ||
| Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| Ref | Expression |
|---|---|
| strsetsid.e |
|
| strsetsid.s |
|
| strsetsid.f |
|
| strsetsid.d |
|
| Ref | Expression |
|---|---|
| strsetsid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strsetsid.s |
. . . 4
| |
| 2 | structex 12786 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | strsetsid.d |
. . 3
| |
| 5 | strsetsid.e |
. . . . 5
| |
| 6 | isstructim 12788 |
. . . . . . . . 9
| |
| 7 | 1, 6 | syl 14 |
. . . . . . . 8
|
| 8 | 7 | simp3d 1013 |
. . . . . . 7
|
| 9 | 7 | simp1d 1011 |
. . . . . . . . 9
|
| 10 | 9 | simp1d 1011 |
. . . . . . . 8
|
| 11 | fzssnn 10189 |
. . . . . . . 8
| |
| 12 | 10, 11 | syl 14 |
. . . . . . 7
|
| 13 | 8, 12 | sstrd 3202 |
. . . . . 6
|
| 14 | 13, 4 | sseldd 3193 |
. . . . 5
|
| 15 | 5, 3, 14 | strnfvnd 12794 |
. . . 4
|
| 16 | strsetsid.f |
. . . . 5
| |
| 17 | funfvex 5592 |
. . . . 5
| |
| 18 | 16, 4, 17 | syl2anc 411 |
. . . 4
|
| 19 | 15, 18 | eqeltrd 2281 |
. . 3
|
| 20 | setsvala 12805 |
. . 3
| |
| 21 | 3, 4, 19, 20 | syl3anc 1249 |
. 2
|
| 22 | 15 | opeq2d 3825 |
. . . 4
|
| 23 | 22 | sneqd 3645 |
. . 3
|
| 24 | 23 | uneq2d 3326 |
. 2
|
| 25 | nnssz 9388 |
. . . . 5
| |
| 26 | 13, 25 | sstrdi 3204 |
. . . 4
|
| 27 | zdceq 9447 |
. . . . 5
| |
| 28 | 27 | rgen2a 2559 |
. . . 4
|
| 29 | ssralv 3256 |
. . . . . 6
| |
| 30 | 29 | ralimdv 2573 |
. . . . 5
|
| 31 | ssralv 3256 |
. . . . 5
| |
| 32 | 30, 31 | syld 45 |
. . . 4
|
| 33 | 26, 28, 32 | mpisyl 1465 |
. . 3
|
| 34 | funresdfunsndc 6591 |
. . 3
| |
| 35 | 33, 16, 4, 34 | syl3anc 1249 |
. 2
|
| 36 | 21, 24, 35 | 3eqtrrd 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-struct 12776 df-slot 12778 df-sets 12781 |
| This theorem is referenced by: strressid 12845 |
| Copyright terms: Public domain | W3C validator |