ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strsetsid Unicode version

Theorem strsetsid 12807
Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strsetsid.e  |-  E  = Slot  ( E `  ndx )
strsetsid.s  |-  ( ph  ->  S Struct  <. M ,  N >. )
strsetsid.f  |-  ( ph  ->  Fun  S )
strsetsid.d  |-  ( ph  ->  ( E `  ndx )  e.  dom  S )
Assertion
Ref Expression
strsetsid  |-  ( ph  ->  S  =  ( S sSet  <. ( E `  ndx ) ,  ( E `  S ) >. )
)

Proof of Theorem strsetsid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 strsetsid.s . . . 4  |-  ( ph  ->  S Struct  <. M ,  N >. )
2 structex 12786 . . . 4  |-  ( S Struct  <. M ,  N >.  ->  S  e.  _V )
31, 2syl 14 . . 3  |-  ( ph  ->  S  e.  _V )
4 strsetsid.d . . 3  |-  ( ph  ->  ( E `  ndx )  e.  dom  S )
5 strsetsid.e . . . . 5  |-  E  = Slot  ( E `  ndx )
6 isstructim 12788 . . . . . . . . 9  |-  ( S Struct  <. M ,  N >.  -> 
( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( S  \  { (/) } )  /\  dom  S  C_  ( M ... N
) ) )
71, 6syl 14 . . . . . . . 8  |-  ( ph  ->  ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( S  \  { (/) } )  /\  dom  S  C_  ( M ... N
) ) )
87simp3d 1013 . . . . . . 7  |-  ( ph  ->  dom  S  C_  ( M ... N ) )
97simp1d 1011 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N ) )
109simp1d 1011 . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
11 fzssnn 10189 . . . . . . . 8  |-  ( M  e.  NN  ->  ( M ... N )  C_  NN )
1210, 11syl 14 . . . . . . 7  |-  ( ph  ->  ( M ... N
)  C_  NN )
138, 12sstrd 3202 . . . . . 6  |-  ( ph  ->  dom  S  C_  NN )
1413, 4sseldd 3193 . . . . 5  |-  ( ph  ->  ( E `  ndx )  e.  NN )
155, 3, 14strnfvnd 12794 . . . 4  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
16 strsetsid.f . . . . 5  |-  ( ph  ->  Fun  S )
17 funfvex 5592 . . . . 5  |-  ( ( Fun  S  /\  ( E `  ndx )  e. 
dom  S )  -> 
( S `  ( E `  ndx ) )  e.  _V )
1816, 4, 17syl2anc 411 . . . 4  |-  ( ph  ->  ( S `  ( E `  ndx ) )  e.  _V )
1915, 18eqeltrd 2281 . . 3  |-  ( ph  ->  ( E `  S
)  e.  _V )
20 setsvala 12805 . . 3  |-  ( ( S  e.  _V  /\  ( E `  ndx )  e.  dom  S  /\  ( E `  S )  e.  _V )  ->  ( S sSet  <. ( E `  ndx ) ,  ( E `
 S ) >.
)  =  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( E `  S
) >. } ) )
213, 4, 19, 20syl3anc 1249 . 2  |-  ( ph  ->  ( S sSet  <. ( E `  ndx ) ,  ( E `  S
) >. )  =  ( ( S  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( E `  S ) >. } ) )
2215opeq2d 3825 . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  ( E `  S ) >.  =  <. ( E `  ndx ) ,  ( S `  ( E `  ndx )
) >. )
2322sneqd 3645 . . 3  |-  ( ph  ->  { <. ( E `  ndx ) ,  ( E `
 S ) >. }  =  { <. ( E `  ndx ) ,  ( S `  ( E `  ndx ) )
>. } )
2423uneq2d 3326 . 2  |-  ( ph  ->  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  ( E `
 S ) >. } )  =  ( ( S  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( S `  ( E `  ndx ) ) >. } ) )
25 nnssz 9388 . . . . 5  |-  NN  C_  ZZ
2613, 25sstrdi 3204 . . . 4  |-  ( ph  ->  dom  S  C_  ZZ )
27 zdceq 9447 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  -> DECID  x  =  y )
2827rgen2a 2559 . . . 4  |-  A. x  e.  ZZ  A. y  e.  ZZ DECID  x  =  y
29 ssralv 3256 . . . . . 6  |-  ( dom 
S  C_  ZZ  ->  ( A. y  e.  ZZ DECID  x  =  y  ->  A. y  e.  dom  SDECID  x  =  y ) )
3029ralimdv 2573 . . . . 5  |-  ( dom 
S  C_  ZZ  ->  ( A. x  e.  ZZ  A. y  e.  ZZ DECID  x  =  y  ->  A. x  e.  ZZ  A. y  e.  dom  SDECID  x  =  y ) )
31 ssralv 3256 . . . . 5  |-  ( dom 
S  C_  ZZ  ->  ( A. x  e.  ZZ  A. y  e.  dom  SDECID  x  =  y  ->  A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y ) )
3230, 31syld 45 . . . 4  |-  ( dom 
S  C_  ZZ  ->  ( A. x  e.  ZZ  A. y  e.  ZZ DECID  x  =  y  ->  A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y ) )
3326, 28, 32mpisyl 1465 . . 3  |-  ( ph  ->  A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y )
34 funresdfunsndc 6591 . . 3  |-  ( ( A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y  /\  Fun  S  /\  ( E `  ndx )  e.  dom  S )  ->  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( S `  ( E `  ndx ) )
>. } )  =  S )
3533, 16, 4, 34syl3anc 1249 . 2  |-  ( ph  ->  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  ( S `
 ( E `  ndx ) ) >. } )  =  S )
3621, 24, 353eqtrrd 2242 1  |-  ( ph  ->  S  =  ( S sSet  <. ( E `  ndx ) ,  ( E `  S ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 835    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   _Vcvv 2771    \ cdif 3162    u. cun 3163    C_ wss 3165   (/)c0 3459   {csn 3632   <.cop 3635   class class class wbr 4043   dom cdm 4674    |` cres 4676   Fun wfun 5264   ` cfv 5270  (class class class)co 5943    <_ cle 8107   NNcn 9035   ZZcz 9371   ...cfz 10129   Struct cstr 12770   ndxcnx 12771   sSet csts 12772  Slot cslot 12773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-struct 12776  df-slot 12778  df-sets 12781
This theorem is referenced by:  strressid  12845
  Copyright terms: Public domain W3C validator