ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strsetsid Unicode version

Theorem strsetsid 11992
Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strsetsid.e  |-  E  = Slot  ( E `  ndx )
strsetsid.s  |-  ( ph  ->  S Struct  <. M ,  N >. )
strsetsid.f  |-  ( ph  ->  Fun  S )
strsetsid.d  |-  ( ph  ->  ( E `  ndx )  e.  dom  S )
Assertion
Ref Expression
strsetsid  |-  ( ph  ->  S  =  ( S sSet  <. ( E `  ndx ) ,  ( E `  S ) >. )
)

Proof of Theorem strsetsid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 strsetsid.s . . . 4  |-  ( ph  ->  S Struct  <. M ,  N >. )
2 structex 11971 . . . 4  |-  ( S Struct  <. M ,  N >.  ->  S  e.  _V )
31, 2syl 14 . . 3  |-  ( ph  ->  S  e.  _V )
4 strsetsid.d . . 3  |-  ( ph  ->  ( E `  ndx )  e.  dom  S )
5 strsetsid.e . . . . 5  |-  E  = Slot  ( E `  ndx )
6 isstructim 11973 . . . . . . . . 9  |-  ( S Struct  <. M ,  N >.  -> 
( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( S  \  { (/) } )  /\  dom  S  C_  ( M ... N
) ) )
71, 6syl 14 . . . . . . . 8  |-  ( ph  ->  ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( S  \  { (/) } )  /\  dom  S  C_  ( M ... N
) ) )
87simp3d 995 . . . . . . 7  |-  ( ph  ->  dom  S  C_  ( M ... N ) )
97simp1d 993 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N ) )
109simp1d 993 . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
11 fzssnn 9848 . . . . . . . 8  |-  ( M  e.  NN  ->  ( M ... N )  C_  NN )
1210, 11syl 14 . . . . . . 7  |-  ( ph  ->  ( M ... N
)  C_  NN )
138, 12sstrd 3107 . . . . . 6  |-  ( ph  ->  dom  S  C_  NN )
1413, 4sseldd 3098 . . . . 5  |-  ( ph  ->  ( E `  ndx )  e.  NN )
155, 3, 14strnfvnd 11979 . . . 4  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
16 strsetsid.f . . . . 5  |-  ( ph  ->  Fun  S )
17 funfvex 5438 . . . . 5  |-  ( ( Fun  S  /\  ( E `  ndx )  e. 
dom  S )  -> 
( S `  ( E `  ndx ) )  e.  _V )
1816, 4, 17syl2anc 408 . . . 4  |-  ( ph  ->  ( S `  ( E `  ndx ) )  e.  _V )
1915, 18eqeltrd 2216 . . 3  |-  ( ph  ->  ( E `  S
)  e.  _V )
20 setsvala 11990 . . 3  |-  ( ( S  e.  _V  /\  ( E `  ndx )  e.  dom  S  /\  ( E `  S )  e.  _V )  ->  ( S sSet  <. ( E `  ndx ) ,  ( E `
 S ) >.
)  =  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( E `  S
) >. } ) )
213, 4, 19, 20syl3anc 1216 . 2  |-  ( ph  ->  ( S sSet  <. ( E `  ndx ) ,  ( E `  S
) >. )  =  ( ( S  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( E `  S ) >. } ) )
2215opeq2d 3712 . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  ( E `  S ) >.  =  <. ( E `  ndx ) ,  ( S `  ( E `  ndx )
) >. )
2322sneqd 3540 . . 3  |-  ( ph  ->  { <. ( E `  ndx ) ,  ( E `
 S ) >. }  =  { <. ( E `  ndx ) ,  ( S `  ( E `  ndx ) )
>. } )
2423uneq2d 3230 . 2  |-  ( ph  ->  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  ( E `
 S ) >. } )  =  ( ( S  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( S `  ( E `  ndx ) ) >. } ) )
25 nnssz 9071 . . . . 5  |-  NN  C_  ZZ
2613, 25sstrdi 3109 . . . 4  |-  ( ph  ->  dom  S  C_  ZZ )
27 zdceq 9126 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  -> DECID  x  =  y )
2827rgen2a 2486 . . . 4  |-  A. x  e.  ZZ  A. y  e.  ZZ DECID  x  =  y
29 ssralv 3161 . . . . . 6  |-  ( dom 
S  C_  ZZ  ->  ( A. y  e.  ZZ DECID  x  =  y  ->  A. y  e.  dom  SDECID  x  =  y ) )
3029ralimdv 2500 . . . . 5  |-  ( dom 
S  C_  ZZ  ->  ( A. x  e.  ZZ  A. y  e.  ZZ DECID  x  =  y  ->  A. x  e.  ZZ  A. y  e.  dom  SDECID  x  =  y ) )
31 ssralv 3161 . . . . 5  |-  ( dom 
S  C_  ZZ  ->  ( A. x  e.  ZZ  A. y  e.  dom  SDECID  x  =  y  ->  A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y ) )
3230, 31syld 45 . . . 4  |-  ( dom 
S  C_  ZZ  ->  ( A. x  e.  ZZ  A. y  e.  ZZ DECID  x  =  y  ->  A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y ) )
3326, 28, 32mpisyl 1422 . . 3  |-  ( ph  ->  A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y )
34 funresdfunsndc 6402 . . 3  |-  ( ( A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y  /\  Fun  S  /\  ( E `  ndx )  e.  dom  S )  ->  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( S `  ( E `  ndx ) )
>. } )  =  S )
3533, 16, 4, 34syl3anc 1216 . 2  |-  ( ph  ->  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  ( S `
 ( E `  ndx ) ) >. } )  =  S )
3621, 24, 353eqtrrd 2177 1  |-  ( ph  ->  S  =  ( S sSet  <. ( E `  ndx ) ,  ( E `  S ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 819    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   _Vcvv 2686    \ cdif 3068    u. cun 3069    C_ wss 3071   (/)c0 3363   {csn 3527   <.cop 3530   class class class wbr 3929   dom cdm 4539    |` cres 4541   Fun wfun 5117   ` cfv 5123  (class class class)co 5774    <_ cle 7801   NNcn 8720   ZZcz 9054   ...cfz 9790   Struct cstr 11955   ndxcnx 11956   sSet csts 11957  Slot cslot 11958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-struct 11961  df-slot 11963  df-sets 11966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator