ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strsetsid Unicode version

Theorem strsetsid 12736
Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strsetsid.e  |-  E  = Slot  ( E `  ndx )
strsetsid.s  |-  ( ph  ->  S Struct  <. M ,  N >. )
strsetsid.f  |-  ( ph  ->  Fun  S )
strsetsid.d  |-  ( ph  ->  ( E `  ndx )  e.  dom  S )
Assertion
Ref Expression
strsetsid  |-  ( ph  ->  S  =  ( S sSet  <. ( E `  ndx ) ,  ( E `  S ) >. )
)

Proof of Theorem strsetsid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 strsetsid.s . . . 4  |-  ( ph  ->  S Struct  <. M ,  N >. )
2 structex 12715 . . . 4  |-  ( S Struct  <. M ,  N >.  ->  S  e.  _V )
31, 2syl 14 . . 3  |-  ( ph  ->  S  e.  _V )
4 strsetsid.d . . 3  |-  ( ph  ->  ( E `  ndx )  e.  dom  S )
5 strsetsid.e . . . . 5  |-  E  = Slot  ( E `  ndx )
6 isstructim 12717 . . . . . . . . 9  |-  ( S Struct  <. M ,  N >.  -> 
( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( S  \  { (/) } )  /\  dom  S  C_  ( M ... N
) ) )
71, 6syl 14 . . . . . . . 8  |-  ( ph  ->  ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( S  \  { (/) } )  /\  dom  S  C_  ( M ... N
) ) )
87simp3d 1013 . . . . . . 7  |-  ( ph  ->  dom  S  C_  ( M ... N ) )
97simp1d 1011 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N ) )
109simp1d 1011 . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
11 fzssnn 10160 . . . . . . . 8  |-  ( M  e.  NN  ->  ( M ... N )  C_  NN )
1210, 11syl 14 . . . . . . 7  |-  ( ph  ->  ( M ... N
)  C_  NN )
138, 12sstrd 3194 . . . . . 6  |-  ( ph  ->  dom  S  C_  NN )
1413, 4sseldd 3185 . . . . 5  |-  ( ph  ->  ( E `  ndx )  e.  NN )
155, 3, 14strnfvnd 12723 . . . 4  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
16 strsetsid.f . . . . 5  |-  ( ph  ->  Fun  S )
17 funfvex 5578 . . . . 5  |-  ( ( Fun  S  /\  ( E `  ndx )  e. 
dom  S )  -> 
( S `  ( E `  ndx ) )  e.  _V )
1816, 4, 17syl2anc 411 . . . 4  |-  ( ph  ->  ( S `  ( E `  ndx ) )  e.  _V )
1915, 18eqeltrd 2273 . . 3  |-  ( ph  ->  ( E `  S
)  e.  _V )
20 setsvala 12734 . . 3  |-  ( ( S  e.  _V  /\  ( E `  ndx )  e.  dom  S  /\  ( E `  S )  e.  _V )  ->  ( S sSet  <. ( E `  ndx ) ,  ( E `
 S ) >.
)  =  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( E `  S
) >. } ) )
213, 4, 19, 20syl3anc 1249 . 2  |-  ( ph  ->  ( S sSet  <. ( E `  ndx ) ,  ( E `  S
) >. )  =  ( ( S  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( E `  S ) >. } ) )
2215opeq2d 3816 . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  ( E `  S ) >.  =  <. ( E `  ndx ) ,  ( S `  ( E `  ndx )
) >. )
2322sneqd 3636 . . 3  |-  ( ph  ->  { <. ( E `  ndx ) ,  ( E `
 S ) >. }  =  { <. ( E `  ndx ) ,  ( S `  ( E `  ndx ) )
>. } )
2423uneq2d 3318 . 2  |-  ( ph  ->  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  ( E `
 S ) >. } )  =  ( ( S  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( S `  ( E `  ndx ) ) >. } ) )
25 nnssz 9360 . . . . 5  |-  NN  C_  ZZ
2613, 25sstrdi 3196 . . . 4  |-  ( ph  ->  dom  S  C_  ZZ )
27 zdceq 9418 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  -> DECID  x  =  y )
2827rgen2a 2551 . . . 4  |-  A. x  e.  ZZ  A. y  e.  ZZ DECID  x  =  y
29 ssralv 3248 . . . . . 6  |-  ( dom 
S  C_  ZZ  ->  ( A. y  e.  ZZ DECID  x  =  y  ->  A. y  e.  dom  SDECID  x  =  y ) )
3029ralimdv 2565 . . . . 5  |-  ( dom 
S  C_  ZZ  ->  ( A. x  e.  ZZ  A. y  e.  ZZ DECID  x  =  y  ->  A. x  e.  ZZ  A. y  e.  dom  SDECID  x  =  y ) )
31 ssralv 3248 . . . . 5  |-  ( dom 
S  C_  ZZ  ->  ( A. x  e.  ZZ  A. y  e.  dom  SDECID  x  =  y  ->  A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y ) )
3230, 31syld 45 . . . 4  |-  ( dom 
S  C_  ZZ  ->  ( A. x  e.  ZZ  A. y  e.  ZZ DECID  x  =  y  ->  A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y ) )
3326, 28, 32mpisyl 1457 . . 3  |-  ( ph  ->  A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y )
34 funresdfunsndc 6573 . . 3  |-  ( ( A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y  /\  Fun  S  /\  ( E `  ndx )  e.  dom  S )  ->  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( S `  ( E `  ndx ) )
>. } )  =  S )
3533, 16, 4, 34syl3anc 1249 . 2  |-  ( ph  ->  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  ( S `
 ( E `  ndx ) ) >. } )  =  S )
3621, 24, 353eqtrrd 2234 1  |-  ( ph  ->  S  =  ( S sSet  <. ( E `  ndx ) ,  ( E `  S ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    \ cdif 3154    u. cun 3155    C_ wss 3157   (/)c0 3451   {csn 3623   <.cop 3626   class class class wbr 4034   dom cdm 4664    |` cres 4666   Fun wfun 5253   ` cfv 5259  (class class class)co 5925    <_ cle 8079   NNcn 9007   ZZcz 9343   ...cfz 10100   Struct cstr 12699   ndxcnx 12700   sSet csts 12701  Slot cslot 12702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-struct 12705  df-slot 12707  df-sets 12710
This theorem is referenced by:  strressid  12774
  Copyright terms: Public domain W3C validator