| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strsetsid | Unicode version | ||
| Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| Ref | Expression |
|---|---|
| strsetsid.e |
|
| strsetsid.s |
|
| strsetsid.f |
|
| strsetsid.d |
|
| Ref | Expression |
|---|---|
| strsetsid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strsetsid.s |
. . . 4
| |
| 2 | structex 12929 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | strsetsid.d |
. . 3
| |
| 5 | strsetsid.e |
. . . . 5
| |
| 6 | isstructim 12931 |
. . . . . . . . 9
| |
| 7 | 1, 6 | syl 14 |
. . . . . . . 8
|
| 8 | 7 | simp3d 1014 |
. . . . . . 7
|
| 9 | 7 | simp1d 1012 |
. . . . . . . . 9
|
| 10 | 9 | simp1d 1012 |
. . . . . . . 8
|
| 11 | fzssnn 10220 |
. . . . . . . 8
| |
| 12 | 10, 11 | syl 14 |
. . . . . . 7
|
| 13 | 8, 12 | sstrd 3207 |
. . . . . 6
|
| 14 | 13, 4 | sseldd 3198 |
. . . . 5
|
| 15 | 5, 3, 14 | strnfvnd 12937 |
. . . 4
|
| 16 | strsetsid.f |
. . . . 5
| |
| 17 | funfvex 5611 |
. . . . 5
| |
| 18 | 16, 4, 17 | syl2anc 411 |
. . . 4
|
| 19 | 15, 18 | eqeltrd 2283 |
. . 3
|
| 20 | setsvala 12948 |
. . 3
| |
| 21 | 3, 4, 19, 20 | syl3anc 1250 |
. 2
|
| 22 | 15 | opeq2d 3835 |
. . . 4
|
| 23 | 22 | sneqd 3651 |
. . 3
|
| 24 | 23 | uneq2d 3331 |
. 2
|
| 25 | nnssz 9419 |
. . . . 5
| |
| 26 | 13, 25 | sstrdi 3209 |
. . . 4
|
| 27 | zdceq 9478 |
. . . . 5
| |
| 28 | 27 | rgen2a 2561 |
. . . 4
|
| 29 | ssralv 3261 |
. . . . . 6
| |
| 30 | 29 | ralimdv 2575 |
. . . . 5
|
| 31 | ssralv 3261 |
. . . . 5
| |
| 32 | 30, 31 | syld 45 |
. . . 4
|
| 33 | 26, 28, 32 | mpisyl 1467 |
. . 3
|
| 34 | funresdfunsndc 6610 |
. . 3
| |
| 35 | 33, 16, 4, 34 | syl3anc 1250 |
. 2
|
| 36 | 21, 24, 35 | 3eqtrrd 2244 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-inn 9067 df-n0 9326 df-z 9403 df-uz 9679 df-fz 10161 df-struct 12919 df-slot 12921 df-sets 12924 |
| This theorem is referenced by: strressid 12988 |
| Copyright terms: Public domain | W3C validator |