ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strsetsid Unicode version

Theorem strsetsid 12449
Description: Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strsetsid.e  |-  E  = Slot  ( E `  ndx )
strsetsid.s  |-  ( ph  ->  S Struct  <. M ,  N >. )
strsetsid.f  |-  ( ph  ->  Fun  S )
strsetsid.d  |-  ( ph  ->  ( E `  ndx )  e.  dom  S )
Assertion
Ref Expression
strsetsid  |-  ( ph  ->  S  =  ( S sSet  <. ( E `  ndx ) ,  ( E `  S ) >. )
)

Proof of Theorem strsetsid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 strsetsid.s . . . 4  |-  ( ph  ->  S Struct  <. M ,  N >. )
2 structex 12428 . . . 4  |-  ( S Struct  <. M ,  N >.  ->  S  e.  _V )
31, 2syl 14 . . 3  |-  ( ph  ->  S  e.  _V )
4 strsetsid.d . . 3  |-  ( ph  ->  ( E `  ndx )  e.  dom  S )
5 strsetsid.e . . . . 5  |-  E  = Slot  ( E `  ndx )
6 isstructim 12430 . . . . . . . . 9  |-  ( S Struct  <. M ,  N >.  -> 
( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( S  \  { (/) } )  /\  dom  S  C_  ( M ... N
) ) )
71, 6syl 14 . . . . . . . 8  |-  ( ph  ->  ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( S  \  { (/) } )  /\  dom  S  C_  ( M ... N
) ) )
87simp3d 1006 . . . . . . 7  |-  ( ph  ->  dom  S  C_  ( M ... N ) )
97simp1d 1004 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N ) )
109simp1d 1004 . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
11 fzssnn 10024 . . . . . . . 8  |-  ( M  e.  NN  ->  ( M ... N )  C_  NN )
1210, 11syl 14 . . . . . . 7  |-  ( ph  ->  ( M ... N
)  C_  NN )
138, 12sstrd 3157 . . . . . 6  |-  ( ph  ->  dom  S  C_  NN )
1413, 4sseldd 3148 . . . . 5  |-  ( ph  ->  ( E `  ndx )  e.  NN )
155, 3, 14strnfvnd 12436 . . . 4  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
16 strsetsid.f . . . . 5  |-  ( ph  ->  Fun  S )
17 funfvex 5513 . . . . 5  |-  ( ( Fun  S  /\  ( E `  ndx )  e. 
dom  S )  -> 
( S `  ( E `  ndx ) )  e.  _V )
1816, 4, 17syl2anc 409 . . . 4  |-  ( ph  ->  ( S `  ( E `  ndx ) )  e.  _V )
1915, 18eqeltrd 2247 . . 3  |-  ( ph  ->  ( E `  S
)  e.  _V )
20 setsvala 12447 . . 3  |-  ( ( S  e.  _V  /\  ( E `  ndx )  e.  dom  S  /\  ( E `  S )  e.  _V )  ->  ( S sSet  <. ( E `  ndx ) ,  ( E `
 S ) >.
)  =  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( E `  S
) >. } ) )
213, 4, 19, 20syl3anc 1233 . 2  |-  ( ph  ->  ( S sSet  <. ( E `  ndx ) ,  ( E `  S
) >. )  =  ( ( S  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( E `  S ) >. } ) )
2215opeq2d 3772 . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  ( E `  S ) >.  =  <. ( E `  ndx ) ,  ( S `  ( E `  ndx )
) >. )
2322sneqd 3596 . . 3  |-  ( ph  ->  { <. ( E `  ndx ) ,  ( E `
 S ) >. }  =  { <. ( E `  ndx ) ,  ( S `  ( E `  ndx ) )
>. } )
2423uneq2d 3281 . 2  |-  ( ph  ->  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  ( E `
 S ) >. } )  =  ( ( S  |`  ( _V  \  { ( E `
 ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( S `  ( E `  ndx ) ) >. } ) )
25 nnssz 9229 . . . . 5  |-  NN  C_  ZZ
2613, 25sstrdi 3159 . . . 4  |-  ( ph  ->  dom  S  C_  ZZ )
27 zdceq 9287 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  -> DECID  x  =  y )
2827rgen2a 2524 . . . 4  |-  A. x  e.  ZZ  A. y  e.  ZZ DECID  x  =  y
29 ssralv 3211 . . . . . 6  |-  ( dom 
S  C_  ZZ  ->  ( A. y  e.  ZZ DECID  x  =  y  ->  A. y  e.  dom  SDECID  x  =  y ) )
3029ralimdv 2538 . . . . 5  |-  ( dom 
S  C_  ZZ  ->  ( A. x  e.  ZZ  A. y  e.  ZZ DECID  x  =  y  ->  A. x  e.  ZZ  A. y  e.  dom  SDECID  x  =  y ) )
31 ssralv 3211 . . . . 5  |-  ( dom 
S  C_  ZZ  ->  ( A. x  e.  ZZ  A. y  e.  dom  SDECID  x  =  y  ->  A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y ) )
3230, 31syld 45 . . . 4  |-  ( dom 
S  C_  ZZ  ->  ( A. x  e.  ZZ  A. y  e.  ZZ DECID  x  =  y  ->  A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y ) )
3326, 28, 32mpisyl 1439 . . 3  |-  ( ph  ->  A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y )
34 funresdfunsndc 6485 . . 3  |-  ( ( A. x  e.  dom  S A. y  e.  dom  SDECID  x  =  y  /\  Fun  S  /\  ( E `  ndx )  e.  dom  S )  ->  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u.  { <. ( E `  ndx ) ,  ( S `  ( E `  ndx ) )
>. } )  =  S )
3533, 16, 4, 34syl3anc 1233 . 2  |-  ( ph  ->  ( ( S  |`  ( _V  \  { ( E `  ndx ) } ) )  u. 
{ <. ( E `  ndx ) ,  ( S `
 ( E `  ndx ) ) >. } )  =  S )
3621, 24, 353eqtrrd 2208 1  |-  ( ph  ->  S  =  ( S sSet  <. ( E `  ndx ) ,  ( E `  S ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   _Vcvv 2730    \ cdif 3118    u. cun 3119    C_ wss 3121   (/)c0 3414   {csn 3583   <.cop 3586   class class class wbr 3989   dom cdm 4611    |` cres 4613   Fun wfun 5192   ` cfv 5198  (class class class)co 5853    <_ cle 7955   NNcn 8878   ZZcz 9212   ...cfz 9965   Struct cstr 12412   ndxcnx 12413   sSet csts 12414  Slot cslot 12415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-struct 12418  df-slot 12420  df-sets 12423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator