Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djudoml | Unicode version |
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
Ref | Expression |
---|---|
djudoml | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 7012 | . . . . 5 inl | |
2 | 1 | funmpt2 5227 | . . . 4 inl |
3 | simpl 108 | . . . 4 | |
4 | resfunexg 5706 | . . . 4 inl inl | |
5 | 2, 3, 4 | sylancr 411 | . . 3 inl |
6 | inlresf1 7026 | . . 3 inl ⊔ | |
7 | f1eq1 5388 | . . . 4 inl ⊔ inl ⊔ | |
8 | 7 | spcegv 2814 | . . 3 inl inl ⊔ ⊔ |
9 | 5, 6, 8 | mpisyl 1434 | . 2 ⊔ |
10 | djuex 7008 | . . 3 ⊔ | |
11 | brdomg 6714 | . . 3 ⊔ ⊔ ⊔ | |
12 | 10, 11 | syl 14 | . 2 ⊔ ⊔ |
13 | 9, 12 | mpbird 166 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1480 wcel 2136 cvv 2726 c0 3409 cop 3579 class class class wbr 3982 cres 4606 wfun 5182 wf1 5185 cdom 6705 ⊔ cdju 7002 inlcinl 7010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dom 6708 df-dju 7003 df-inl 7012 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |