ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudoml Unicode version

Theorem djudoml 7068
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
djudoml  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  ( A B ) )

Proof of Theorem djudoml
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df-inl 6925 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
21funmpt2 5157 . . . 4  |-  Fun inl
3 simpl 108 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  V )
4 resfunexg 5634 . . . 4  |-  ( ( Fun inl  /\  A  e.  V )  ->  (inl  |`  A )  e.  _V )
52, 3, 4sylancr 410 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl  |`  A )  e. 
_V )
6 inlresf1 6939 . . 3  |-  (inl  |`  A ) : A -1-1-> ( A B )
7 f1eq1 5318 . . . 4  |-  ( f  =  (inl  |`  A )  ->  ( f : A -1-1-> ( A B )  <-> 
(inl  |`  A ) : A -1-1-> ( A B ) ) )
87spcegv 2769 . . 3  |-  ( (inl  |`  A )  e.  _V  ->  ( (inl  |`  A ) : A -1-1-> ( A B )  ->  E. f 
f : A -1-1-> ( A B ) ) )
95, 6, 8mpisyl 1422 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  E. f  f : A -1-1-> ( A B ) )
10 djuex 6921 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )
11 brdomg 6635 . . 3  |-  ( ( A B )  e.  _V  ->  ( A  ~<_  ( A B )  <->  E. f 
f : A -1-1-> ( A B ) ) )
1210, 11syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~<_  ( A B )  <->  E. f 
f : A -1-1-> ( A B ) ) )
139, 12mpbird 166 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1468    e. wcel 1480   _Vcvv 2681   (/)c0 3358   <.cop 3525   class class class wbr 3924    |` cres 4536   Fun wfun 5112   -1-1->wf1 5115    ~<_ cdom 6626   ⊔ cdju 6915  inlcinl 6923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-1st 6031  df-2nd 6032  df-1o 6306  df-dom 6629  df-dju 6916  df-inl 6925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator