Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djudoml | Unicode version |
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
Ref | Expression |
---|---|
djudoml | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 7006 | . . . . 5 inl | |
2 | 1 | funmpt2 5224 | . . . 4 inl |
3 | simpl 108 | . . . 4 | |
4 | resfunexg 5703 | . . . 4 inl inl | |
5 | 2, 3, 4 | sylancr 411 | . . 3 inl |
6 | inlresf1 7020 | . . 3 inl ⊔ | |
7 | f1eq1 5385 | . . . 4 inl ⊔ inl ⊔ | |
8 | 7 | spcegv 2812 | . . 3 inl inl ⊔ ⊔ |
9 | 5, 6, 8 | mpisyl 1433 | . 2 ⊔ |
10 | djuex 7002 | . . 3 ⊔ | |
11 | brdomg 6708 | . . 3 ⊔ ⊔ ⊔ | |
12 | 10, 11 | syl 14 | . 2 ⊔ ⊔ |
13 | 9, 12 | mpbird 166 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1479 wcel 2135 cvv 2724 c0 3407 cop 3576 class class class wbr 3979 cres 4603 wfun 5179 wf1 5182 cdom 6699 ⊔ cdju 6996 inlcinl 7004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4094 ax-sep 4097 ax-nul 4105 ax-pow 4150 ax-pr 4184 ax-un 4408 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2726 df-sbc 2950 df-csb 3044 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-nul 3408 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-iun 3865 df-br 3980 df-opab 4041 df-mpt 4042 df-tr 4078 df-id 4268 df-iord 4341 df-on 4343 df-suc 4346 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-f1 5190 df-fo 5191 df-f1o 5192 df-fv 5193 df-1st 6103 df-2nd 6104 df-1o 6378 df-dom 6702 df-dju 6997 df-inl 7006 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |