ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudoml Unicode version

Theorem djudoml 7169
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
djudoml  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  ( A B ) )

Proof of Theorem djudoml
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df-inl 7006 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
21funmpt2 5224 . . . 4  |-  Fun inl
3 simpl 108 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  V )
4 resfunexg 5703 . . . 4  |-  ( ( Fun inl  /\  A  e.  V )  ->  (inl  |`  A )  e.  _V )
52, 3, 4sylancr 411 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl  |`  A )  e. 
_V )
6 inlresf1 7020 . . 3  |-  (inl  |`  A ) : A -1-1-> ( A B )
7 f1eq1 5385 . . . 4  |-  ( f  =  (inl  |`  A )  ->  ( f : A -1-1-> ( A B )  <-> 
(inl  |`  A ) : A -1-1-> ( A B ) ) )
87spcegv 2812 . . 3  |-  ( (inl  |`  A )  e.  _V  ->  ( (inl  |`  A ) : A -1-1-> ( A B )  ->  E. f 
f : A -1-1-> ( A B ) ) )
95, 6, 8mpisyl 1433 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  E. f  f : A -1-1-> ( A B ) )
10 djuex 7002 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )
11 brdomg 6708 . . 3  |-  ( ( A B )  e.  _V  ->  ( A  ~<_  ( A B )  <->  E. f 
f : A -1-1-> ( A B ) ) )
1210, 11syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~<_  ( A B )  <->  E. f 
f : A -1-1-> ( A B ) ) )
139, 12mpbird 166 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1479    e. wcel 2135   _Vcvv 2724   (/)c0 3407   <.cop 3576   class class class wbr 3979    |` cres 4603   Fun wfun 5179   -1-1->wf1 5182    ~<_ cdom 6699   ⊔ cdju 6996  inlcinl 7004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4094  ax-sep 4097  ax-nul 4105  ax-pow 4150  ax-pr 4184  ax-un 4408
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-iun 3865  df-br 3980  df-opab 4041  df-mpt 4042  df-tr 4078  df-id 4268  df-iord 4341  df-on 4343  df-suc 4346  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-f1 5190  df-fo 5191  df-f1o 5192  df-fv 5193  df-1st 6103  df-2nd 6104  df-1o 6378  df-dom 6702  df-dju 6997  df-inl 7006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator