ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudoml Unicode version

Theorem djudoml 7281
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
djudoml  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  ( A B ) )

Proof of Theorem djudoml
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df-inl 7108 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
21funmpt2 5294 . . . 4  |-  Fun inl
3 simpl 109 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  V )
4 resfunexg 5780 . . . 4  |-  ( ( Fun inl  /\  A  e.  V )  ->  (inl  |`  A )  e.  _V )
52, 3, 4sylancr 414 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl  |`  A )  e. 
_V )
6 inlresf1 7122 . . 3  |-  (inl  |`  A ) : A -1-1-> ( A B )
7 f1eq1 5455 . . . 4  |-  ( f  =  (inl  |`  A )  ->  ( f : A -1-1-> ( A B )  <-> 
(inl  |`  A ) : A -1-1-> ( A B ) ) )
87spcegv 2849 . . 3  |-  ( (inl  |`  A )  e.  _V  ->  ( (inl  |`  A ) : A -1-1-> ( A B )  ->  E. f 
f : A -1-1-> ( A B ) ) )
95, 6, 8mpisyl 1457 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  E. f  f : A -1-1-> ( A B ) )
10 djuex 7104 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )
11 brdomg 6804 . . 3  |-  ( ( A B )  e.  _V  ->  ( A  ~<_  ( A B )  <->  E. f 
f : A -1-1-> ( A B ) ) )
1210, 11syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~<_  ( A B )  <->  E. f 
f : A -1-1-> ( A B ) ) )
139, 12mpbird 167 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1503    e. wcel 2164   _Vcvv 2760   (/)c0 3447   <.cop 3622   class class class wbr 4030    |` cres 4662   Fun wfun 5249   -1-1->wf1 5252    ~<_ cdom 6795   ⊔ cdju 7098  inlcinl 7106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dom 6798  df-dju 7099  df-inl 7108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator