ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltoddhalfle Unicode version

Theorem ltoddhalfle 12058
Description: An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ltoddhalfle  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )

Proof of Theorem ltoddhalfle
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odd2np1 12038 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2 halfre 9204 . . . . . . . . . . . . . . . 16  |-  ( 1  /  2 )  e.  RR
32a1i 9 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
1  /  2 )  e.  RR )
4 1red 8041 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  1  e.  RR )
5 zre 9330 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  n  e.  RR )
63, 4, 53jca 1179 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
( 1  /  2
)  e.  RR  /\  1  e.  RR  /\  n  e.  RR ) )
76adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 1  / 
2 )  e.  RR  /\  1  e.  RR  /\  n  e.  RR )
)
8 halflt1 9208 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  <  1
9 axltadd 8096 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR  /\  n  e.  RR )  ->  (
( 1  /  2
)  <  1  ->  ( n  +  ( 1  /  2 ) )  <  ( n  + 
1 ) ) )
107, 8, 9mpisyl 1457 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  ( 1  /  2 ) )  <  ( n  +  1 ) )
11 zre 9330 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211adantl 277 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  M  e.  RR )
135, 3readdcld 8056 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
n  +  ( 1  /  2 ) )  e.  RR )
1413adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  ( 1  /  2 ) )  e.  RR )
15 peano2z 9362 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
n  +  1 )  e.  ZZ )
1615zred 9448 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
n  +  1 )  e.  RR )
1716adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  1 )  e.  RR )
18 lttr 8100 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  ( n  +  (
1  /  2 ) )  e.  RR  /\  ( n  +  1
)  e.  RR )  ->  ( ( M  <  ( n  +  ( 1  /  2
) )  /\  (
n  +  ( 1  /  2 ) )  <  ( n  + 
1 ) )  ->  M  <  ( n  + 
1 ) ) )
1912, 14, 17, 18syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  < 
( n  +  ( 1  /  2 ) )  /\  ( n  +  ( 1  / 
2 ) )  < 
( n  +  1 ) )  ->  M  <  ( n  +  1 ) ) )
2010, 19mpan2d 428 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  ->  M  <  (
n  +  1 ) ) )
21 zleltp1 9381 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  <_  n  <->  M  <  ( n  + 
1 ) ) )
2221ancoms 268 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  n  <->  M  <  ( n  + 
1 ) ) )
2320, 22sylibrd 169 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  ->  M  <_  n
) )
24 halfgt0 9206 . . . . . . . . . . . 12  |-  0  <  ( 1  /  2
)
253, 5jca 306 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
( 1  /  2
)  e.  RR  /\  n  e.  RR )
)
2625adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 1  / 
2 )  e.  RR  /\  n  e.  RR ) )
27 ltaddpos 8479 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  n  e.  RR )  ->  ( 0  <  (
1  /  2 )  <-> 
n  <  ( n  +  ( 1  / 
2 ) ) ) )
2826, 27syl 14 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0  <  (
1  /  2 )  <-> 
n  <  ( n  +  ( 1  / 
2 ) ) ) )
2924, 28mpbii 148 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  <  ( n  +  ( 1  / 
2 ) ) )
305adantr 276 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  e.  RR )
31 lelttr 8115 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  n  e.  RR  /\  (
n  +  ( 1  /  2 ) )  e.  RR )  -> 
( ( M  <_  n  /\  n  <  (
n  +  ( 1  /  2 ) ) )  ->  M  <  ( n  +  ( 1  /  2 ) ) ) )
3212, 30, 14, 31syl3anc 1249 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  <_  n  /\  n  <  (
n  +  ( 1  /  2 ) ) )  ->  M  <  ( n  +  ( 1  /  2 ) ) ) )
3329, 32mpan2d 428 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  n  ->  M  <  ( n  +  ( 1  / 
2 ) ) ) )
3423, 33impbid 129 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  <-> 
M  <_  n )
)
35 zcn 9331 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  CC )
36 1cnd 8042 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  1  e.  CC )
37 2cn 9061 . . . . . . . . . . . . . 14  |-  2  e.  CC
38 2ap0 9083 . . . . . . . . . . . . . 14  |-  2 #  0
3937, 38pm3.2i 272 . . . . . . . . . . . . 13  |-  ( 2  e.  CC  /\  2 #  0 )
4039a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
2  e.  CC  /\  2 #  0 ) )
41 muldivdirap 8734 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
4235, 36, 40, 41syl3anc 1249 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( n  +  ( 1  /  2
) ) )
4342breq2d 4045 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  ( M  <  ( ( ( 2  x.  n )  +  1 )  / 
2 )  <->  M  <  ( n  +  ( 1  /  2 ) ) ) )
4443adantr 276 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <  ( n  +  ( 1  / 
2 ) ) ) )
45 2z 9354 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
4645a1i 9 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ZZ  ->  2  e.  ZZ )
47 id 19 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ZZ  ->  n  e.  ZZ )
4846, 47zmulcld 9454 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  ZZ )
4948zcnd 9449 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  CC )
5049adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  x.  n
)  e.  CC )
51 pncan1 8403 . . . . . . . . . . . . 13  |-  ( ( 2  x.  n )  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5250, 51syl 14 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5352oveq1d 5937 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  =  ( ( 2  x.  n )  /  2 ) )
54 2cnd 9063 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2  e.  CC )
5538a1i 9 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2 #  0 )
5635, 54, 55divcanap3d 8822 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
( 2  x.  n
)  /  2 )  =  n )
5756adantr 276 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 2  x.  n )  /  2
)  =  n )
5853, 57eqtrd 2229 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  =  n )
5958breq2d 4045 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  <-> 
M  <_  n )
)
6034, 44, 593bitr4d 220 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <_  ( (
( ( 2  x.  n )  +  1 )  -  1 )  /  2 ) ) )
61 oveq1 5929 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( N  / 
2 ) )
6261breq2d 4045 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( M  <  ( ( ( 2  x.  n )  +  1 )  / 
2 )  <->  M  <  ( N  /  2 ) ) )
63 oveq1 5929 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( N  - 
1 ) )
6463oveq1d 5937 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  ( ( N  -  1 )  / 
2 ) )
6564breq2d 4045 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( M  <_  ( ( ( ( 2  x.  n
)  +  1 )  -  1 )  / 
2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )
6662, 65bibi12d 235 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <_  ( (
( ( 2  x.  n )  +  1 )  -  1 )  /  2 ) )  <-> 
( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) )
6760, 66syl5ibcom 155 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  < 
( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) )
6867ex 115 . . . . . 6  |-  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
6968adantl 277 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  < 
( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
7069com23 78 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  e.  ZZ  ->  ( M  <  ( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
7170rexlimdva 2614 . . 3  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  e.  ZZ  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
721, 71sylbid 150 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( M  e.  ZZ  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
73723imp 1195 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4033  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197   # cap 8608    / cdiv 8699   2c2 9041   ZZcz 9326    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-dvds 11953
This theorem is referenced by:  gausslemma2dlem1a  15299
  Copyright terms: Public domain W3C validator