ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltoddhalfle Unicode version

Theorem ltoddhalfle 11597
Description: An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ltoddhalfle  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )

Proof of Theorem ltoddhalfle
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odd2np1 11577 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2 halfre 8940 . . . . . . . . . . . . . . . 16  |-  ( 1  /  2 )  e.  RR
32a1i 9 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
1  /  2 )  e.  RR )
4 1red 7788 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  1  e.  RR )
5 zre 9065 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  n  e.  RR )
63, 4, 53jca 1161 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
( 1  /  2
)  e.  RR  /\  1  e.  RR  /\  n  e.  RR ) )
76adantr 274 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 1  / 
2 )  e.  RR  /\  1  e.  RR  /\  n  e.  RR )
)
8 halflt1 8944 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  <  1
9 axltadd 7841 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR  /\  n  e.  RR )  ->  (
( 1  /  2
)  <  1  ->  ( n  +  ( 1  /  2 ) )  <  ( n  + 
1 ) ) )
107, 8, 9mpisyl 1422 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  ( 1  /  2 ) )  <  ( n  +  1 ) )
11 zre 9065 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211adantl 275 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  M  e.  RR )
135, 3readdcld 7802 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
n  +  ( 1  /  2 ) )  e.  RR )
1413adantr 274 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  ( 1  /  2 ) )  e.  RR )
15 peano2z 9097 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
n  +  1 )  e.  ZZ )
1615zred 9180 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
n  +  1 )  e.  RR )
1716adantr 274 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  1 )  e.  RR )
18 lttr 7845 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  ( n  +  (
1  /  2 ) )  e.  RR  /\  ( n  +  1
)  e.  RR )  ->  ( ( M  <  ( n  +  ( 1  /  2
) )  /\  (
n  +  ( 1  /  2 ) )  <  ( n  + 
1 ) )  ->  M  <  ( n  + 
1 ) ) )
1912, 14, 17, 18syl3anc 1216 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  < 
( n  +  ( 1  /  2 ) )  /\  ( n  +  ( 1  / 
2 ) )  < 
( n  +  1 ) )  ->  M  <  ( n  +  1 ) ) )
2010, 19mpan2d 424 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  ->  M  <  (
n  +  1 ) ) )
21 zleltp1 9116 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  <_  n  <->  M  <  ( n  + 
1 ) ) )
2221ancoms 266 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  n  <->  M  <  ( n  + 
1 ) ) )
2320, 22sylibrd 168 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  ->  M  <_  n
) )
24 halfgt0 8942 . . . . . . . . . . . 12  |-  0  <  ( 1  /  2
)
253, 5jca 304 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
( 1  /  2
)  e.  RR  /\  n  e.  RR )
)
2625adantr 274 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 1  / 
2 )  e.  RR  /\  n  e.  RR ) )
27 ltaddpos 8221 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  n  e.  RR )  ->  ( 0  <  (
1  /  2 )  <-> 
n  <  ( n  +  ( 1  / 
2 ) ) ) )
2826, 27syl 14 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0  <  (
1  /  2 )  <-> 
n  <  ( n  +  ( 1  / 
2 ) ) ) )
2924, 28mpbii 147 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  <  ( n  +  ( 1  / 
2 ) ) )
305adantr 274 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  e.  RR )
31 lelttr 7859 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  n  e.  RR  /\  (
n  +  ( 1  /  2 ) )  e.  RR )  -> 
( ( M  <_  n  /\  n  <  (
n  +  ( 1  /  2 ) ) )  ->  M  <  ( n  +  ( 1  /  2 ) ) ) )
3212, 30, 14, 31syl3anc 1216 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  <_  n  /\  n  <  (
n  +  ( 1  /  2 ) ) )  ->  M  <  ( n  +  ( 1  /  2 ) ) ) )
3329, 32mpan2d 424 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  n  ->  M  <  ( n  +  ( 1  / 
2 ) ) ) )
3423, 33impbid 128 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  <-> 
M  <_  n )
)
35 zcn 9066 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  CC )
36 1cnd 7789 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  1  e.  CC )
37 2cn 8798 . . . . . . . . . . . . . 14  |-  2  e.  CC
38 2ap0 8820 . . . . . . . . . . . . . 14  |-  2 #  0
3937, 38pm3.2i 270 . . . . . . . . . . . . 13  |-  ( 2  e.  CC  /\  2 #  0 )
4039a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
2  e.  CC  /\  2 #  0 ) )
41 muldivdirap 8474 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
4235, 36, 40, 41syl3anc 1216 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( n  +  ( 1  /  2
) ) )
4342breq2d 3941 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  ( M  <  ( ( ( 2  x.  n )  +  1 )  / 
2 )  <->  M  <  ( n  +  ( 1  /  2 ) ) ) )
4443adantr 274 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <  ( n  +  ( 1  / 
2 ) ) ) )
45 2z 9089 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
4645a1i 9 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ZZ  ->  2  e.  ZZ )
47 id 19 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ZZ  ->  n  e.  ZZ )
4846, 47zmulcld 9186 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  ZZ )
4948zcnd 9181 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  CC )
5049adantr 274 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  x.  n
)  e.  CC )
51 pncan1 8146 . . . . . . . . . . . . 13  |-  ( ( 2  x.  n )  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5250, 51syl 14 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5352oveq1d 5789 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  =  ( ( 2  x.  n )  /  2 ) )
54 2cnd 8800 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2  e.  CC )
5538a1i 9 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2 #  0 )
5635, 54, 55divcanap3d 8562 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
( 2  x.  n
)  /  2 )  =  n )
5756adantr 274 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 2  x.  n )  /  2
)  =  n )
5853, 57eqtrd 2172 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  =  n )
5958breq2d 3941 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  <-> 
M  <_  n )
)
6034, 44, 593bitr4d 219 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <_  ( (
( ( 2  x.  n )  +  1 )  -  1 )  /  2 ) ) )
61 oveq1 5781 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( N  / 
2 ) )
6261breq2d 3941 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( M  <  ( ( ( 2  x.  n )  +  1 )  / 
2 )  <->  M  <  ( N  /  2 ) ) )
63 oveq1 5781 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( N  - 
1 ) )
6463oveq1d 5789 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  ( ( N  -  1 )  / 
2 ) )
6564breq2d 3941 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( M  <_  ( ( ( ( 2  x.  n
)  +  1 )  -  1 )  / 
2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )
6662, 65bibi12d 234 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <_  ( (
( ( 2  x.  n )  +  1 )  -  1 )  /  2 ) )  <-> 
( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) )
6760, 66syl5ibcom 154 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  < 
( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) )
6867ex 114 . . . . . 6  |-  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
6968adantl 275 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  < 
( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
7069com23 78 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  e.  ZZ  ->  ( M  <  ( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
7170rexlimdva 2549 . . 3  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  e.  ZZ  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
721, 71sylbid 149 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( M  e.  ZZ  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
73723imp 1175 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2417   class class class wbr 3929  (class class class)co 5774   CCcc 7625   RRcr 7626   0cc0 7627   1c1 7628    + caddc 7630    x. cmul 7632    < clt 7807    <_ cle 7808    - cmin 7940   # cap 8350    / cdiv 8439   2c2 8778   ZZcz 9061    || cdvds 11500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-n0 8985  df-z 9062  df-dvds 11501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator