ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltoddhalfle Unicode version

Theorem ltoddhalfle 11925
Description: An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ltoddhalfle  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )

Proof of Theorem ltoddhalfle
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odd2np1 11905 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2 halfre 9157 . . . . . . . . . . . . . . . 16  |-  ( 1  /  2 )  e.  RR
32a1i 9 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
1  /  2 )  e.  RR )
4 1red 7997 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  1  e.  RR )
5 zre 9282 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  n  e.  RR )
63, 4, 53jca 1179 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
( 1  /  2
)  e.  RR  /\  1  e.  RR  /\  n  e.  RR ) )
76adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 1  / 
2 )  e.  RR  /\  1  e.  RR  /\  n  e.  RR )
)
8 halflt1 9161 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  <  1
9 axltadd 8052 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR  /\  n  e.  RR )  ->  (
( 1  /  2
)  <  1  ->  ( n  +  ( 1  /  2 ) )  <  ( n  + 
1 ) ) )
107, 8, 9mpisyl 1457 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  ( 1  /  2 ) )  <  ( n  +  1 ) )
11 zre 9282 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211adantl 277 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  M  e.  RR )
135, 3readdcld 8012 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
n  +  ( 1  /  2 ) )  e.  RR )
1413adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  ( 1  /  2 ) )  e.  RR )
15 peano2z 9314 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
n  +  1 )  e.  ZZ )
1615zred 9400 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
n  +  1 )  e.  RR )
1716adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  1 )  e.  RR )
18 lttr 8056 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  ( n  +  (
1  /  2 ) )  e.  RR  /\  ( n  +  1
)  e.  RR )  ->  ( ( M  <  ( n  +  ( 1  /  2
) )  /\  (
n  +  ( 1  /  2 ) )  <  ( n  + 
1 ) )  ->  M  <  ( n  + 
1 ) ) )
1912, 14, 17, 18syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  < 
( n  +  ( 1  /  2 ) )  /\  ( n  +  ( 1  / 
2 ) )  < 
( n  +  1 ) )  ->  M  <  ( n  +  1 ) ) )
2010, 19mpan2d 428 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  ->  M  <  (
n  +  1 ) ) )
21 zleltp1 9333 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  <_  n  <->  M  <  ( n  + 
1 ) ) )
2221ancoms 268 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  n  <->  M  <  ( n  + 
1 ) ) )
2320, 22sylibrd 169 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  ->  M  <_  n
) )
24 halfgt0 9159 . . . . . . . . . . . 12  |-  0  <  ( 1  /  2
)
253, 5jca 306 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
( 1  /  2
)  e.  RR  /\  n  e.  RR )
)
2625adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 1  / 
2 )  e.  RR  /\  n  e.  RR ) )
27 ltaddpos 8434 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  n  e.  RR )  ->  ( 0  <  (
1  /  2 )  <-> 
n  <  ( n  +  ( 1  / 
2 ) ) ) )
2826, 27syl 14 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0  <  (
1  /  2 )  <-> 
n  <  ( n  +  ( 1  / 
2 ) ) ) )
2924, 28mpbii 148 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  <  ( n  +  ( 1  / 
2 ) ) )
305adantr 276 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  e.  RR )
31 lelttr 8071 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  n  e.  RR  /\  (
n  +  ( 1  /  2 ) )  e.  RR )  -> 
( ( M  <_  n  /\  n  <  (
n  +  ( 1  /  2 ) ) )  ->  M  <  ( n  +  ( 1  /  2 ) ) ) )
3212, 30, 14, 31syl3anc 1249 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  <_  n  /\  n  <  (
n  +  ( 1  /  2 ) ) )  ->  M  <  ( n  +  ( 1  /  2 ) ) ) )
3329, 32mpan2d 428 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  n  ->  M  <  ( n  +  ( 1  / 
2 ) ) ) )
3423, 33impbid 129 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  <-> 
M  <_  n )
)
35 zcn 9283 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  CC )
36 1cnd 7998 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  1  e.  CC )
37 2cn 9015 . . . . . . . . . . . . . 14  |-  2  e.  CC
38 2ap0 9037 . . . . . . . . . . . . . 14  |-  2 #  0
3937, 38pm3.2i 272 . . . . . . . . . . . . 13  |-  ( 2  e.  CC  /\  2 #  0 )
4039a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
2  e.  CC  /\  2 #  0 ) )
41 muldivdirap 8689 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
4235, 36, 40, 41syl3anc 1249 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( n  +  ( 1  /  2
) ) )
4342breq2d 4030 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  ( M  <  ( ( ( 2  x.  n )  +  1 )  / 
2 )  <->  M  <  ( n  +  ( 1  /  2 ) ) ) )
4443adantr 276 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <  ( n  +  ( 1  / 
2 ) ) ) )
45 2z 9306 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
4645a1i 9 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ZZ  ->  2  e.  ZZ )
47 id 19 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ZZ  ->  n  e.  ZZ )
4846, 47zmulcld 9406 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  ZZ )
4948zcnd 9401 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  CC )
5049adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  x.  n
)  e.  CC )
51 pncan1 8359 . . . . . . . . . . . . 13  |-  ( ( 2  x.  n )  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5250, 51syl 14 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5352oveq1d 5907 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  =  ( ( 2  x.  n )  /  2 ) )
54 2cnd 9017 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2  e.  CC )
5538a1i 9 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2 #  0 )
5635, 54, 55divcanap3d 8777 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
( 2  x.  n
)  /  2 )  =  n )
5756adantr 276 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 2  x.  n )  /  2
)  =  n )
5853, 57eqtrd 2222 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  =  n )
5958breq2d 4030 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  <-> 
M  <_  n )
)
6034, 44, 593bitr4d 220 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <_  ( (
( ( 2  x.  n )  +  1 )  -  1 )  /  2 ) ) )
61 oveq1 5899 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( N  / 
2 ) )
6261breq2d 4030 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( M  <  ( ( ( 2  x.  n )  +  1 )  / 
2 )  <->  M  <  ( N  /  2 ) ) )
63 oveq1 5899 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( N  - 
1 ) )
6463oveq1d 5907 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  ( ( N  -  1 )  / 
2 ) )
6564breq2d 4030 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( M  <_  ( ( ( ( 2  x.  n
)  +  1 )  -  1 )  / 
2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )
6662, 65bibi12d 235 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <_  ( (
( ( 2  x.  n )  +  1 )  -  1 )  /  2 ) )  <-> 
( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) )
6760, 66syl5ibcom 155 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  < 
( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) )
6867ex 115 . . . . . 6  |-  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
6968adantl 277 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  < 
( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
7069com23 78 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  e.  ZZ  ->  ( M  <  ( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
7170rexlimdva 2607 . . 3  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  e.  ZZ  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
721, 71sylbid 150 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( M  e.  ZZ  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
73723imp 1195 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   E.wrex 2469   class class class wbr 4018  (class class class)co 5892   CCcc 7834   RRcr 7835   0cc0 7836   1c1 7837    + caddc 7839    x. cmul 7841    < clt 8017    <_ cle 8018    - cmin 8153   # cap 8563    / cdiv 8654   2c2 8995   ZZcz 9278    || cdvds 11821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-mulrcl 7935  ax-addcom 7936  ax-mulcom 7937  ax-addass 7938  ax-mulass 7939  ax-distr 7940  ax-i2m1 7941  ax-0lt1 7942  ax-1rid 7943  ax-0id 7944  ax-rnegex 7945  ax-precex 7946  ax-cnre 7947  ax-pre-ltirr 7948  ax-pre-ltwlin 7949  ax-pre-lttrn 7950  ax-pre-apti 7951  ax-pre-ltadd 7952  ax-pre-mulgt0 7953  ax-pre-mulext 7954
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-po 4311  df-iso 4312  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5234  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-pnf 8019  df-mnf 8020  df-xr 8021  df-ltxr 8022  df-le 8023  df-sub 8155  df-neg 8156  df-reap 8557  df-ap 8564  df-div 8655  df-inn 8945  df-2 9003  df-n0 9202  df-z 9279  df-dvds 11822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator