ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltoddhalfle Unicode version

Theorem ltoddhalfle 11320
Description: An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ltoddhalfle  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )

Proof of Theorem ltoddhalfle
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odd2np1 11300 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2 halfre 8727 . . . . . . . . . . . . . . . 16  |-  ( 1  /  2 )  e.  RR
32a1i 9 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
1  /  2 )  e.  RR )
4 1red 7600 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  1  e.  RR )
5 zre 8852 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  n  e.  RR )
63, 4, 53jca 1126 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
( 1  /  2
)  e.  RR  /\  1  e.  RR  /\  n  e.  RR ) )
76adantr 271 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 1  / 
2 )  e.  RR  /\  1  e.  RR  /\  n  e.  RR )
)
8 halflt1 8731 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  <  1
9 axltadd 7653 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR  /\  n  e.  RR )  ->  (
( 1  /  2
)  <  1  ->  ( n  +  ( 1  /  2 ) )  <  ( n  + 
1 ) ) )
107, 8, 9mpisyl 1387 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  ( 1  /  2 ) )  <  ( n  +  1 ) )
11 zre 8852 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211adantl 272 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  M  e.  RR )
135, 3readdcld 7614 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
n  +  ( 1  /  2 ) )  e.  RR )
1413adantr 271 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  ( 1  /  2 ) )  e.  RR )
15 peano2z 8884 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
n  +  1 )  e.  ZZ )
1615zred 8967 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
n  +  1 )  e.  RR )
1716adantr 271 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  1 )  e.  RR )
18 lttr 7656 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  ( n  +  (
1  /  2 ) )  e.  RR  /\  ( n  +  1
)  e.  RR )  ->  ( ( M  <  ( n  +  ( 1  /  2
) )  /\  (
n  +  ( 1  /  2 ) )  <  ( n  + 
1 ) )  ->  M  <  ( n  + 
1 ) ) )
1912, 14, 17, 18syl3anc 1181 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  < 
( n  +  ( 1  /  2 ) )  /\  ( n  +  ( 1  / 
2 ) )  < 
( n  +  1 ) )  ->  M  <  ( n  +  1 ) ) )
2010, 19mpan2d 420 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  ->  M  <  (
n  +  1 ) ) )
21 zleltp1 8903 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  <_  n  <->  M  <  ( n  + 
1 ) ) )
2221ancoms 265 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  n  <->  M  <  ( n  + 
1 ) ) )
2320, 22sylibrd 168 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  ->  M  <_  n
) )
24 halfgt0 8729 . . . . . . . . . . . 12  |-  0  <  ( 1  /  2
)
253, 5jca 301 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
( 1  /  2
)  e.  RR  /\  n  e.  RR )
)
2625adantr 271 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 1  / 
2 )  e.  RR  /\  n  e.  RR ) )
27 ltaddpos 8027 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  n  e.  RR )  ->  ( 0  <  (
1  /  2 )  <-> 
n  <  ( n  +  ( 1  / 
2 ) ) ) )
2826, 27syl 14 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0  <  (
1  /  2 )  <-> 
n  <  ( n  +  ( 1  / 
2 ) ) ) )
2924, 28mpbii 147 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  <  ( n  +  ( 1  / 
2 ) ) )
305adantr 271 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  e.  RR )
31 lelttr 7670 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  n  e.  RR  /\  (
n  +  ( 1  /  2 ) )  e.  RR )  -> 
( ( M  <_  n  /\  n  <  (
n  +  ( 1  /  2 ) ) )  ->  M  <  ( n  +  ( 1  /  2 ) ) ) )
3212, 30, 14, 31syl3anc 1181 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  <_  n  /\  n  <  (
n  +  ( 1  /  2 ) ) )  ->  M  <  ( n  +  ( 1  /  2 ) ) ) )
3329, 32mpan2d 420 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  n  ->  M  <  ( n  +  ( 1  / 
2 ) ) ) )
3423, 33impbid 128 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  <-> 
M  <_  n )
)
35 zcn 8853 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  CC )
36 1cnd 7601 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  1  e.  CC )
37 2cn 8591 . . . . . . . . . . . . . 14  |-  2  e.  CC
38 2ap0 8613 . . . . . . . . . . . . . 14  |-  2 #  0
3937, 38pm3.2i 267 . . . . . . . . . . . . 13  |-  ( 2  e.  CC  /\  2 #  0 )
4039a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
2  e.  CC  /\  2 #  0 ) )
41 muldivdirap 8271 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
4235, 36, 40, 41syl3anc 1181 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( n  +  ( 1  /  2
) ) )
4342breq2d 3879 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  ( M  <  ( ( ( 2  x.  n )  +  1 )  / 
2 )  <->  M  <  ( n  +  ( 1  /  2 ) ) ) )
4443adantr 271 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <  ( n  +  ( 1  / 
2 ) ) ) )
45 2z 8876 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
4645a1i 9 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ZZ  ->  2  e.  ZZ )
47 id 19 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ZZ  ->  n  e.  ZZ )
4846, 47zmulcld 8973 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  ZZ )
4948zcnd 8968 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  CC )
5049adantr 271 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  x.  n
)  e.  CC )
51 pncan1 7952 . . . . . . . . . . . . 13  |-  ( ( 2  x.  n )  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5250, 51syl 14 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5352oveq1d 5705 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  =  ( ( 2  x.  n )  /  2 ) )
54 2cnd 8593 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2  e.  CC )
5538a1i 9 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2 #  0 )
5635, 54, 55divcanap3d 8359 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
( 2  x.  n
)  /  2 )  =  n )
5756adantr 271 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 2  x.  n )  /  2
)  =  n )
5853, 57eqtrd 2127 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  =  n )
5958breq2d 3879 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  <-> 
M  <_  n )
)
6034, 44, 593bitr4d 219 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <_  ( (
( ( 2  x.  n )  +  1 )  -  1 )  /  2 ) ) )
61 oveq1 5697 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( N  / 
2 ) )
6261breq2d 3879 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( M  <  ( ( ( 2  x.  n )  +  1 )  / 
2 )  <->  M  <  ( N  /  2 ) ) )
63 oveq1 5697 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( N  - 
1 ) )
6463oveq1d 5705 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  ( ( N  -  1 )  / 
2 ) )
6564breq2d 3879 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( M  <_  ( ( ( ( 2  x.  n
)  +  1 )  -  1 )  / 
2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )
6662, 65bibi12d 234 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <_  ( (
( ( 2  x.  n )  +  1 )  -  1 )  /  2 ) )  <-> 
( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) )
6760, 66syl5ibcom 154 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  < 
( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) )
6867ex 114 . . . . . 6  |-  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
6968adantl 272 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  < 
( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
7069com23 78 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  e.  ZZ  ->  ( M  <  ( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
7170rexlimdva 2502 . . 3  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  e.  ZZ  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
721, 71sylbid 149 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( M  e.  ZZ  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
73723imp 1140 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 927    = wceq 1296    e. wcel 1445   E.wrex 2371   class class class wbr 3867  (class class class)co 5690   CCcc 7445   RRcr 7446   0cc0 7447   1c1 7448    + caddc 7450    x. cmul 7452    < clt 7619    <_ cle 7620    - cmin 7750   # cap 8155    / cdiv 8236   2c2 8571   ZZcz 8848    || cdvds 11223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-xor 1319  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-n0 8772  df-z 8849  df-dvds 11224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator