ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltoddhalfle Unicode version

Theorem ltoddhalfle 11900
Description: An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ltoddhalfle  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )

Proof of Theorem ltoddhalfle
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odd2np1 11880 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2 halfre 9134 . . . . . . . . . . . . . . . 16  |-  ( 1  /  2 )  e.  RR
32a1i 9 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
1  /  2 )  e.  RR )
4 1red 7974 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  1  e.  RR )
5 zre 9259 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  n  e.  RR )
63, 4, 53jca 1177 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
( 1  /  2
)  e.  RR  /\  1  e.  RR  /\  n  e.  RR ) )
76adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 1  / 
2 )  e.  RR  /\  1  e.  RR  /\  n  e.  RR )
)
8 halflt1 9138 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  <  1
9 axltadd 8029 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR  /\  n  e.  RR )  ->  (
( 1  /  2
)  <  1  ->  ( n  +  ( 1  /  2 ) )  <  ( n  + 
1 ) ) )
107, 8, 9mpisyl 1446 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  ( 1  /  2 ) )  <  ( n  +  1 ) )
11 zre 9259 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211adantl 277 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  M  e.  RR )
135, 3readdcld 7989 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
n  +  ( 1  /  2 ) )  e.  RR )
1413adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  ( 1  /  2 ) )  e.  RR )
15 peano2z 9291 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
n  +  1 )  e.  ZZ )
1615zred 9377 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
n  +  1 )  e.  RR )
1716adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( n  +  1 )  e.  RR )
18 lttr 8033 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  ( n  +  (
1  /  2 ) )  e.  RR  /\  ( n  +  1
)  e.  RR )  ->  ( ( M  <  ( n  +  ( 1  /  2
) )  /\  (
n  +  ( 1  /  2 ) )  <  ( n  + 
1 ) )  ->  M  <  ( n  + 
1 ) ) )
1912, 14, 17, 18syl3anc 1238 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  < 
( n  +  ( 1  /  2 ) )  /\  ( n  +  ( 1  / 
2 ) )  < 
( n  +  1 ) )  ->  M  <  ( n  +  1 ) ) )
2010, 19mpan2d 428 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  ->  M  <  (
n  +  1 ) ) )
21 zleltp1 9310 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  <_  n  <->  M  <  ( n  + 
1 ) ) )
2221ancoms 268 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  n  <->  M  <  ( n  + 
1 ) ) )
2320, 22sylibrd 169 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  ->  M  <_  n
) )
24 halfgt0 9136 . . . . . . . . . . . 12  |-  0  <  ( 1  /  2
)
253, 5jca 306 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
( 1  /  2
)  e.  RR  /\  n  e.  RR )
)
2625adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 1  / 
2 )  e.  RR  /\  n  e.  RR ) )
27 ltaddpos 8411 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  n  e.  RR )  ->  ( 0  <  (
1  /  2 )  <-> 
n  <  ( n  +  ( 1  / 
2 ) ) ) )
2826, 27syl 14 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0  <  (
1  /  2 )  <-> 
n  <  ( n  +  ( 1  / 
2 ) ) ) )
2924, 28mpbii 148 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  <  ( n  +  ( 1  / 
2 ) ) )
305adantr 276 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  e.  RR )
31 lelttr 8048 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  n  e.  RR  /\  (
n  +  ( 1  /  2 ) )  e.  RR )  -> 
( ( M  <_  n  /\  n  <  (
n  +  ( 1  /  2 ) ) )  ->  M  <  ( n  +  ( 1  /  2 ) ) ) )
3212, 30, 14, 31syl3anc 1238 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  <_  n  /\  n  <  (
n  +  ( 1  /  2 ) ) )  ->  M  <  ( n  +  ( 1  /  2 ) ) ) )
3329, 32mpan2d 428 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  n  ->  M  <  ( n  +  ( 1  / 
2 ) ) ) )
3423, 33impbid 129 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
n  +  ( 1  /  2 ) )  <-> 
M  <_  n )
)
35 zcn 9260 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  CC )
36 1cnd 7975 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  1  e.  CC )
37 2cn 8992 . . . . . . . . . . . . . 14  |-  2  e.  CC
38 2ap0 9014 . . . . . . . . . . . . . 14  |-  2 #  0
3937, 38pm3.2i 272 . . . . . . . . . . . . 13  |-  ( 2  e.  CC  /\  2 #  0 )
4039a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
2  e.  CC  /\  2 #  0 ) )
41 muldivdirap 8666 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
4235, 36, 40, 41syl3anc 1238 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( n  +  ( 1  /  2
) ) )
4342breq2d 4017 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  ( M  <  ( ( ( 2  x.  n )  +  1 )  / 
2 )  <->  M  <  ( n  +  ( 1  /  2 ) ) ) )
4443adantr 276 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <  ( n  +  ( 1  / 
2 ) ) ) )
45 2z 9283 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
4645a1i 9 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ZZ  ->  2  e.  ZZ )
47 id 19 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ZZ  ->  n  e.  ZZ )
4846, 47zmulcld 9383 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  ZZ )
4948zcnd 9378 . . . . . . . . . . . . . 14  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  CC )
5049adantr 276 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  x.  n
)  e.  CC )
51 pncan1 8336 . . . . . . . . . . . . 13  |-  ( ( 2  x.  n )  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5250, 51syl 14 . . . . . . . . . . . 12  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5352oveq1d 5892 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  =  ( ( 2  x.  n )  /  2 ) )
54 2cnd 8994 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2  e.  CC )
5538a1i 9 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2 #  0 )
5635, 54, 55divcanap3d 8754 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
( 2  x.  n
)  /  2 )  =  n )
5756adantr 276 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( 2  x.  n )  /  2
)  =  n )
5853, 57eqtrd 2210 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  =  n )
5958breq2d 4017 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <_  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  <-> 
M  <_  n )
)
6034, 44, 593bitr4d 220 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <_  ( (
( ( 2  x.  n )  +  1 )  -  1 )  /  2 ) ) )
61 oveq1 5884 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( N  / 
2 ) )
6261breq2d 4017 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( M  <  ( ( ( 2  x.  n )  +  1 )  / 
2 )  <->  M  <  ( N  /  2 ) ) )
63 oveq1 5884 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( N  - 
1 ) )
6463oveq1d 5892 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  ( ( N  -  1 )  / 
2 ) )
6564breq2d 4017 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( M  <_  ( ( ( ( 2  x.  n
)  +  1 )  -  1 )  / 
2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )
6662, 65bibi12d 235 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( M  <  (
( ( 2  x.  n )  +  1 )  /  2 )  <-> 
M  <_  ( (
( ( 2  x.  n )  +  1 )  -  1 )  /  2 ) )  <-> 
( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) )
6760, 66syl5ibcom 155 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  < 
( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) )
6867ex 115 . . . . . 6  |-  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
6968adantl 277 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  < 
( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
7069com23 78 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  e.  ZZ  ->  ( M  <  ( N  /  2
)  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
7170rexlimdva 2594 . . 3  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  e.  ZZ  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
721, 71sylbid 150 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( M  e.  ZZ  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) ) ) )
73723imp 1193 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  /  2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4005  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    < clt 7994    <_ cle 7995    - cmin 8130   # cap 8540    / cdiv 8631   2c2 8972   ZZcz 9255    || cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-dvds 11797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator