| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1 | Unicode version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5408 |
. . 3
| |
| 2 | rneq 4950 |
. . . 4
| |
| 3 | 2 | sseq1d 3253 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-f 5321 |
. 2
| |
| 6 | df-f 5321 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 |
| This theorem is referenced by: feq1d 5459 feq1i 5465 f00 5516 f0bi 5517 f0dom0 5518 fconstg 5521 f1eq1 5525 fconst2g 5853 tfrcllemsucfn 6497 tfrcllemsucaccv 6498 tfrcllembxssdm 6500 tfrcllembfn 6501 tfrcllemex 6504 tfrcllemaccex 6505 tfrcllemres 6506 tfrcl 6508 elmapg 6806 ac6sfi 7056 updjud 7245 finomni 7303 exmidomni 7305 mkvprop 7321 1fv 10331 seqf1oglem2 10737 seqf1og 10738 iswrd 11068 isgrpinv 13582 isghm 13775 upxp 14940 txcn 14943 plyf 15405 dceqnconst 16387 dcapnconst 16388 |
| Copyright terms: Public domain | W3C validator |