Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feq1 | Unicode version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 5255 | . . 3 | |
2 | rneq 4810 | . . . 4 | |
3 | 2 | sseq1d 3157 | . . 3 |
4 | 1, 3 | anbi12d 465 | . 2 |
5 | df-f 5171 | . 2 | |
6 | df-f 5171 | . 2 | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wss 3102 crn 4584 wfn 5162 wf 5163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-fun 5169 df-fn 5170 df-f 5171 |
This theorem is referenced by: feq1d 5303 feq1i 5309 f00 5358 f0bi 5359 f0dom0 5360 fconstg 5363 f1eq1 5367 fconst2g 5679 tfrcllemsucfn 6294 tfrcllemsucaccv 6295 tfrcllembxssdm 6297 tfrcllembfn 6298 tfrcllemex 6301 tfrcllemaccex 6302 tfrcllemres 6303 tfrcl 6305 elmapg 6599 ac6sfi 6836 updjud 7016 finomni 7066 exmidomni 7068 mkvprop 7084 1fv 10020 upxp 12632 txcn 12635 dceqnconst 13592 dcapnconst 13593 |
Copyright terms: Public domain | W3C validator |