| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1 | Unicode version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5347 |
. . 3
| |
| 2 | rneq 4894 |
. . . 4
| |
| 3 | 2 | sseq1d 3213 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-f 5263 |
. 2
| |
| 6 | df-f 5263 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 |
| This theorem is referenced by: feq1d 5397 feq1i 5403 f00 5452 f0bi 5453 f0dom0 5454 fconstg 5457 f1eq1 5461 fconst2g 5780 tfrcllemsucfn 6420 tfrcllemsucaccv 6421 tfrcllembxssdm 6423 tfrcllembfn 6424 tfrcllemex 6427 tfrcllemaccex 6428 tfrcllemres 6429 tfrcl 6431 elmapg 6729 ac6sfi 6968 updjud 7157 finomni 7215 exmidomni 7217 mkvprop 7233 1fv 10231 seqf1oglem2 10629 seqf1og 10630 iswrd 10954 isgrpinv 13256 isghm 13449 upxp 14592 txcn 14595 plyf 15057 dceqnconst 15791 dcapnconst 15792 |
| Copyright terms: Public domain | W3C validator |