ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1 Unicode version

Theorem feq1 5350
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq1  |-  ( F  =  G  ->  ( F : A --> B  <->  G : A
--> B ) )

Proof of Theorem feq1
StepHypRef Expression
1 fneq1 5306 . . 3  |-  ( F  =  G  ->  ( F  Fn  A  <->  G  Fn  A ) )
2 rneq 4856 . . . 4  |-  ( F  =  G  ->  ran  F  =  ran  G )
32sseq1d 3186 . . 3  |-  ( F  =  G  ->  ( ran  F  C_  B  <->  ran  G  C_  B ) )
41, 3anbi12d 473 . 2  |-  ( F  =  G  ->  (
( F  Fn  A  /\  ran  F  C_  B
)  <->  ( G  Fn  A  /\  ran  G  C_  B ) ) )
5 df-f 5222 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
6 df-f 5222 . 2  |-  ( G : A --> B  <->  ( G  Fn  A  /\  ran  G  C_  B ) )
74, 5, 63bitr4g 223 1  |-  ( F  =  G  ->  ( F : A --> B  <->  G : A
--> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    C_ wss 3131   ran crn 4629    Fn wfn 5213   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222
This theorem is referenced by:  feq1d  5354  feq1i  5360  f00  5409  f0bi  5410  f0dom0  5411  fconstg  5414  f1eq1  5418  fconst2g  5733  tfrcllemsucfn  6356  tfrcllemsucaccv  6357  tfrcllembxssdm  6359  tfrcllembfn  6360  tfrcllemex  6363  tfrcllemaccex  6364  tfrcllemres  6365  tfrcl  6367  elmapg  6663  ac6sfi  6900  updjud  7083  finomni  7140  exmidomni  7142  mkvprop  7158  1fv  10141  isgrpinv  12931  upxp  13811  txcn  13814  dceqnconst  14846  dcapnconst  14847
  Copyright terms: Public domain W3C validator