| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1 | Unicode version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5347 |
. . 3
| |
| 2 | rneq 4894 |
. . . 4
| |
| 3 | 2 | sseq1d 3213 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-f 5263 |
. 2
| |
| 6 | df-f 5263 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 |
| This theorem is referenced by: feq1d 5395 feq1i 5401 f00 5450 f0bi 5451 f0dom0 5452 fconstg 5455 f1eq1 5459 fconst2g 5778 tfrcllemsucfn 6412 tfrcllemsucaccv 6413 tfrcllembxssdm 6415 tfrcllembfn 6416 tfrcllemex 6419 tfrcllemaccex 6420 tfrcllemres 6421 tfrcl 6423 elmapg 6721 ac6sfi 6960 updjud 7149 finomni 7207 exmidomni 7209 mkvprop 7225 1fv 10216 seqf1oglem2 10614 seqf1og 10615 iswrd 10939 isgrpinv 13196 isghm 13383 upxp 14518 txcn 14521 plyf 14983 dceqnconst 15714 dcapnconst 15715 |
| Copyright terms: Public domain | W3C validator |