| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1 | Unicode version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5381 |
. . 3
| |
| 2 | rneq 4924 |
. . . 4
| |
| 3 | 2 | sseq1d 3230 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-f 5294 |
. 2
| |
| 6 | df-f 5294 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 |
| This theorem is referenced by: feq1d 5432 feq1i 5438 f00 5489 f0bi 5490 f0dom0 5491 fconstg 5494 f1eq1 5498 fconst2g 5822 tfrcllemsucfn 6462 tfrcllemsucaccv 6463 tfrcllembxssdm 6465 tfrcllembfn 6466 tfrcllemex 6469 tfrcllemaccex 6470 tfrcllemres 6471 tfrcl 6473 elmapg 6771 ac6sfi 7021 updjud 7210 finomni 7268 exmidomni 7270 mkvprop 7286 1fv 10296 seqf1oglem2 10702 seqf1og 10703 iswrd 11033 isgrpinv 13501 isghm 13694 upxp 14859 txcn 14862 plyf 15324 dceqnconst 16201 dcapnconst 16202 |
| Copyright terms: Public domain | W3C validator |