ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptd Unicode version

Theorem dmmptd 5391
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dmmptd.a  |-  A  =  ( x  e.  B  |->  C )
dmmptd.c  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  V )
Assertion
Ref Expression
dmmptd  |-  ( ph  ->  dom  A  =  B )
Distinct variable groups:    x, B    ph, x
Allowed substitution hints:    A( x)    C( x)    V( x)

Proof of Theorem dmmptd
StepHypRef Expression
1 dmmptd.a . . 3  |-  A  =  ( x  e.  B  |->  C )
21dmmpt 5166 . 2  |-  dom  A  =  { x  e.  B  |  C  e.  _V }
3 dmmptd.c . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  V )
43elexd 2776 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  _V )
54ralrimiva 2570 . . 3  |-  ( ph  ->  A. x  e.  B  C  e.  _V )
6 rabid2 2674 . . 3  |-  ( B  =  { x  e.  B  |  C  e. 
_V }  <->  A. x  e.  B  C  e.  _V )
75, 6sylibr 134 . 2  |-  ( ph  ->  B  =  { x  e.  B  |  C  e.  _V } )
82, 7eqtr4id 2248 1  |-  ( ph  ->  dom  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   _Vcvv 2763    |-> cmpt 4095   dom cdm 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-mpt 4097  df-xp 4670  df-rel 4671  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677
This theorem is referenced by:  4sqlemffi  12590  limccnp2cntop  14997
  Copyright terms: Public domain W3C validator