ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptd Unicode version

Theorem dmmptd 5293
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dmmptd.a  |-  A  =  ( x  e.  B  |->  C )
dmmptd.c  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  V )
Assertion
Ref Expression
dmmptd  |-  ( ph  ->  dom  A  =  B )
Distinct variable groups:    x, B    ph, x
Allowed substitution hints:    A( x)    C( x)    V( x)

Proof of Theorem dmmptd
StepHypRef Expression
1 dmmptd.a . . 3  |-  A  =  ( x  e.  B  |->  C )
21dmmpt 5074 . 2  |-  dom  A  =  { x  e.  B  |  C  e.  _V }
3 dmmptd.c . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  V )
43elexd 2722 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  _V )
54ralrimiva 2527 . . 3  |-  ( ph  ->  A. x  e.  B  C  e.  _V )
6 rabid2 2630 . . 3  |-  ( B  =  { x  e.  B  |  C  e. 
_V }  <->  A. x  e.  B  C  e.  _V )
75, 6sylibr 133 . 2  |-  ( ph  ->  B  =  { x  e.  B  |  C  e.  _V } )
82, 7eqtr4id 2206 1  |-  ( ph  ->  dom  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125   A.wral 2432   {crab 2436   _Vcvv 2709    |-> cmpt 4021   dom cdm 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-mpt 4023  df-xp 4585  df-rel 4586  df-cnv 4587  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592
This theorem is referenced by:  limccnp2cntop  12993
  Copyright terms: Public domain W3C validator