ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptd Unicode version

Theorem dmmptd 5338
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dmmptd.a  |-  A  =  ( x  e.  B  |->  C )
dmmptd.c  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  V )
Assertion
Ref Expression
dmmptd  |-  ( ph  ->  dom  A  =  B )
Distinct variable groups:    x, B    ph, x
Allowed substitution hints:    A( x)    C( x)    V( x)

Proof of Theorem dmmptd
StepHypRef Expression
1 dmmptd.a . . 3  |-  A  =  ( x  e.  B  |->  C )
21dmmpt 5116 . 2  |-  dom  A  =  { x  e.  B  |  C  e.  _V }
3 dmmptd.c . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  V )
43elexd 2748 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  _V )
54ralrimiva 2548 . . 3  |-  ( ph  ->  A. x  e.  B  C  e.  _V )
6 rabid2 2651 . . 3  |-  ( B  =  { x  e.  B  |  C  e. 
_V }  <->  A. x  e.  B  C  e.  _V )
75, 6sylibr 134 . 2  |-  ( ph  ->  B  =  { x  e.  B  |  C  e.  _V } )
82, 7eqtr4id 2227 1  |-  ( ph  ->  dom  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   A.wral 2453   {crab 2457   _Vcvv 2735    |-> cmpt 4059   dom cdm 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-mpt 4061  df-xp 4626  df-rel 4627  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633
This theorem is referenced by:  limccnp2cntop  13717
  Copyright terms: Public domain W3C validator