ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul31d GIF version

Theorem mul31d 8140
Description: Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
muld.1 (𝜑𝐴 ∈ ℂ)
addcomd.2 (𝜑𝐵 ∈ ℂ)
mul12d.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
mul31d (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴))

Proof of Theorem mul31d
StepHypRef Expression
1 muld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addcomd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 mul12d.3 . 2 (𝜑𝐶 ∈ ℂ)
4 mul31 8117 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴))
51, 2, 3, 4syl3anc 1249 1 (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  (class class class)co 5895  cc 7838   · cmul 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-mulcl 7938  ax-mulcom 7941  ax-mulass 7943
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-iota 5196  df-fv 5243  df-ov 5898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator