ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul31d GIF version

Theorem mul31d 8129
Description: Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
muld.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
addcomd.2 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
mul12d.3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
Assertion
Ref Expression
mul31d (๐œ‘ โ†’ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ถ ยท ๐ต) ยท ๐ด))

Proof of Theorem mul31d
StepHypRef Expression
1 muld.1 . 2 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
2 addcomd.2 . 2 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
3 mul12d.3 . 2 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
4 mul31 8106 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ถ ยท ๐ต) ยท ๐ด))
51, 2, 3, 4syl3anc 1249 1 (๐œ‘ โ†’ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ถ ยท ๐ต) ยท ๐ด))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   = wceq 1364   โˆˆ wcel 2160  (class class class)co 5891  โ„‚cc 7827   ยท cmul 7834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-mulcl 7927  ax-mulcom 7930  ax-mulass 7932
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-iota 5193  df-fv 5239  df-ov 5894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator