| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul32d | Unicode version | ||
| Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 |
|
| addcomd.2 |
|
| mul12d.3 |
|
| Ref | Expression |
|---|---|
| mul32d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 |
. 2
| |
| 2 | addcomd.2 |
. 2
| |
| 3 | mul12d.3 |
. 2
| |
| 4 | mul32 8202 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-mulcom 8026 ax-mulass 8028 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: conjmulap 8802 modqmul1 10522 binom3 10802 bernneq 10805 bcm1k 10905 bcp1n 10906 resqrexlemcalc1 11325 resqrexlemnm 11329 reccn2ap 11624 binomlem 11794 tanaddap 12050 eirraplem 12088 dvds2ln 12135 divgcdcoprm0 12423 modprm0 12577 binom4 15451 gausslemma2d 15546 lgsquadlem1 15554 2lgslem3b 15571 2lgslem3c 15572 2lgslem3d 15573 |
| Copyright terms: Public domain | W3C validator |