| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul32d | Unicode version | ||
| Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 |
|
| addcomd.2 |
|
| mul12d.3 |
|
| Ref | Expression |
|---|---|
| mul32d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 |
. 2
| |
| 2 | addcomd.2 |
. 2
| |
| 3 | mul12d.3 |
. 2
| |
| 4 | mul32 8272 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1271 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-mulcom 8096 ax-mulass 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: conjmulap 8872 modqmul1 10594 binom3 10874 bernneq 10877 bcm1k 10977 bcp1n 10978 resqrexlemcalc1 11520 resqrexlemnm 11524 reccn2ap 11819 binomlem 11989 tanaddap 12245 eirraplem 12283 dvds2ln 12330 divgcdcoprm0 12618 modprm0 12772 binom4 15647 gausslemma2d 15742 lgsquadlem1 15750 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 |
| Copyright terms: Public domain | W3C validator |