ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul32d Unicode version

Theorem mul32d 8061
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
muld.1  |-  ( ph  ->  A  e.  CC )
addcomd.2  |-  ( ph  ->  B  e.  CC )
mul12d.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
mul32d  |-  ( ph  ->  ( ( A  x.  B )  x.  C
)  =  ( ( A  x.  C )  x.  B ) )

Proof of Theorem mul32d
StepHypRef Expression
1 muld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addcomd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 mul12d.3 . 2  |-  ( ph  ->  C  e.  CC )
4 mul32 8038 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( ( A  x.  C )  x.  B ) )
51, 2, 3, 4syl3anc 1233 1  |-  ( ph  ->  ( ( A  x.  B )  x.  C
)  =  ( ( A  x.  C )  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141  (class class class)co 5851   CCcc 7761    x. cmul 7768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-mulcom 7864  ax-mulass 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-iota 5158  df-fv 5204  df-ov 5854
This theorem is referenced by:  conjmulap  8635  modqmul1  10322  binom3  10582  bernneq  10585  bcm1k  10683  bcp1n  10684  resqrexlemcalc1  10967  resqrexlemnm  10971  reccn2ap  11265  binomlem  11435  tanaddap  11691  eirraplem  11728  dvds2ln  11775  divgcdcoprm0  12044  modprm0  12197  binom4  13652
  Copyright terms: Public domain W3C validator