| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul32d | Unicode version | ||
| Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 |
|
| addcomd.2 |
|
| mul12d.3 |
|
| Ref | Expression |
|---|---|
| mul32d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 |
. 2
| |
| 2 | addcomd.2 |
. 2
| |
| 3 | mul12d.3 |
. 2
| |
| 4 | mul32 8232 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-mulcom 8056 ax-mulass 8058 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-iota 5246 df-fv 5293 df-ov 5965 |
| This theorem is referenced by: conjmulap 8832 modqmul1 10554 binom3 10834 bernneq 10837 bcm1k 10937 bcp1n 10938 resqrexlemcalc1 11410 resqrexlemnm 11414 reccn2ap 11709 binomlem 11879 tanaddap 12135 eirraplem 12173 dvds2ln 12220 divgcdcoprm0 12508 modprm0 12662 binom4 15536 gausslemma2d 15631 lgsquadlem1 15639 2lgslem3b 15656 2lgslem3c 15657 2lgslem3d 15658 |
| Copyright terms: Public domain | W3C validator |