Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mul4d | Unicode version |
Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | |
addcomd.2 | |
mul12d.3 | |
mul4d.4 |
Ref | Expression |
---|---|
mul4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 | |
2 | addcomd.2 | . 2 | |
3 | mul12d.3 | . 2 | |
4 | mul4d.4 | . 2 | |
5 | mul4 8063 | . 2 | |
6 | 1, 2, 3, 4, 5 | syl22anc 1239 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 (class class class)co 5865 cc 7784 cmul 7791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-mulcl 7884 ax-mulcom 7887 ax-mulass 7889 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: mulreim 8535 remullem 10848 absmul 11046 cosadd 11713 tanaddap 11715 eulerthlema 12197 mul4sqlem 12358 lgsdir 14016 lgsdi 14018 |
Copyright terms: Public domain | W3C validator |