| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul4d | Unicode version | ||
| Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 |
|
| addcomd.2 |
|
| mul12d.3 |
|
| mul4d.4 |
|
| Ref | Expression |
|---|---|
| mul4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 |
. 2
| |
| 2 | addcomd.2 |
. 2
| |
| 3 | mul12d.3 |
. 2
| |
| 4 | mul4d.4 |
. 2
| |
| 5 | mul4 8274 |
. 2
| |
| 6 | 1, 2, 3, 4, 5 | syl22anc 1272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-mulcl 8093 ax-mulcom 8096 ax-mulass 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: mulreim 8747 remullem 11377 absmul 11575 cosadd 12243 tanaddap 12245 eulerthlema 12747 mul4sqlem 12911 plymullem1 15416 lgsdir 15708 lgsdi 15710 lgsquad2lem1 15754 |
| Copyright terms: Public domain | W3C validator |