ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul4d Unicode version

Theorem mul4d 8226
Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
muld.1  |-  ( ph  ->  A  e.  CC )
addcomd.2  |-  ( ph  ->  B  e.  CC )
mul12d.3  |-  ( ph  ->  C  e.  CC )
mul4d.4  |-  ( ph  ->  D  e.  CC )
Assertion
Ref Expression
mul4d  |-  ( ph  ->  ( ( A  x.  B )  x.  ( C  x.  D )
)  =  ( ( A  x.  C )  x.  ( B  x.  D ) ) )

Proof of Theorem mul4d
StepHypRef Expression
1 muld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addcomd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 mul12d.3 . 2  |-  ( ph  ->  C  e.  CC )
4 mul4d.4 . 2  |-  ( ph  ->  D  e.  CC )
5 mul4 8203 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  B )  x.  ( C  x.  D )
)  =  ( ( A  x.  C )  x.  ( B  x.  D ) ) )
61, 2, 3, 4, 5syl22anc 1250 1  |-  ( ph  ->  ( ( A  x.  B )  x.  ( C  x.  D )
)  =  ( ( A  x.  C )  x.  ( B  x.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175  (class class class)co 5943   CCcc 7922    x. cmul 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-mulcl 8022  ax-mulcom 8025  ax-mulass 8027
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278  df-ov 5946
This theorem is referenced by:  mulreim  8676  remullem  11153  absmul  11351  cosadd  12019  tanaddap  12021  eulerthlema  12523  mul4sqlem  12687  plymullem1  15191  lgsdir  15483  lgsdi  15485  lgsquad2lem1  15529
  Copyright terms: Public domain W3C validator