| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp4an | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
| Ref | Expression |
|---|---|
| mp4an.1 |
|
| mp4an.2 |
|
| mp4an.3 |
|
| mp4an.4 |
|
| mp4an.5 |
|
| Ref | Expression |
|---|---|
| mp4an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp4an.1 |
. . 3
| |
| 2 | mp4an.2 |
. . 3
| |
| 3 | 1, 2 | pm3.2i 272 |
. 2
|
| 4 | mp4an.3 |
. . 3
| |
| 5 | mp4an.4 |
. . 3
| |
| 6 | 4, 5 | pm3.2i 272 |
. 2
|
| 7 | mp4an.5 |
. 2
| |
| 8 | 3, 6, 7 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 1lt2nq 7519 m1p1sr 7873 m1m1sr 7874 0lt1sr 7878 axi2m1 7988 mul4i 8220 add4i 8237 addsub4i 8368 muladdi 8481 lt2addi 8583 le2addi 8584 mulap0i 8729 divap0i 8833 divmuldivapi 8845 divmul13api 8846 divadddivapi 8847 divdivdivapi 8848 subrecapi 8913 8th4div3 9256 iap0 9260 fldiv4p1lem1div2 10448 sqrt2gt1lt2 11360 abs3lemi 11468 3dvds2dec 12177 flodddiv4 12247 nprmi 12446 modxai 12739 sinhalfpilem 15263 cos0pilt1 15324 lgsdir2lem1 15505 lgsdir2lem5 15509 m1lgs 15562 2lgslem4 15580 |
| Copyright terms: Public domain | W3C validator |