| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp4an | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
| Ref | Expression |
|---|---|
| mp4an.1 |
|
| mp4an.2 |
|
| mp4an.3 |
|
| mp4an.4 |
|
| mp4an.5 |
|
| Ref | Expression |
|---|---|
| mp4an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp4an.1 |
. . 3
| |
| 2 | mp4an.2 |
. . 3
| |
| 3 | 1, 2 | pm3.2i 272 |
. 2
|
| 4 | mp4an.3 |
. . 3
| |
| 5 | mp4an.4 |
. . 3
| |
| 6 | 4, 5 | pm3.2i 272 |
. 2
|
| 7 | mp4an.5 |
. 2
| |
| 8 | 3, 6, 7 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 1lt2nq 7473 m1p1sr 7827 m1m1sr 7828 0lt1sr 7832 axi2m1 7942 mul4i 8174 add4i 8191 addsub4i 8322 muladdi 8435 lt2addi 8537 le2addi 8538 mulap0i 8683 divap0i 8787 divmuldivapi 8799 divmul13api 8800 divadddivapi 8801 divdivdivapi 8802 subrecapi 8867 8th4div3 9210 iap0 9214 fldiv4p1lem1div2 10395 sqrt2gt1lt2 11214 abs3lemi 11322 3dvds2dec 12031 flodddiv4 12101 nprmi 12292 modxai 12585 sinhalfpilem 15027 cos0pilt1 15088 lgsdir2lem1 15269 lgsdir2lem5 15273 m1lgs 15326 2lgslem4 15344 |
| Copyright terms: Public domain | W3C validator |