| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp4an | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
| Ref | Expression |
|---|---|
| mp4an.1 |
|
| mp4an.2 |
|
| mp4an.3 |
|
| mp4an.4 |
|
| mp4an.5 |
|
| Ref | Expression |
|---|---|
| mp4an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp4an.1 |
. . 3
| |
| 2 | mp4an.2 |
. . 3
| |
| 3 | 1, 2 | pm3.2i 272 |
. 2
|
| 4 | mp4an.3 |
. . 3
| |
| 5 | mp4an.4 |
. . 3
| |
| 6 | 4, 5 | pm3.2i 272 |
. 2
|
| 7 | mp4an.5 |
. 2
| |
| 8 | 3, 6, 7 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 1lt2nq 7521 m1p1sr 7875 m1m1sr 7876 0lt1sr 7880 axi2m1 7990 mul4i 8222 add4i 8239 addsub4i 8370 muladdi 8483 lt2addi 8585 le2addi 8586 mulap0i 8731 divap0i 8835 divmuldivapi 8847 divmul13api 8848 divadddivapi 8849 divdivdivapi 8850 subrecapi 8915 8th4div3 9258 iap0 9262 fldiv4p1lem1div2 10450 sqrt2gt1lt2 11393 abs3lemi 11501 3dvds2dec 12210 flodddiv4 12280 nprmi 12479 modxai 12772 sinhalfpilem 15296 cos0pilt1 15357 lgsdir2lem1 15538 lgsdir2lem5 15542 m1lgs 15595 2lgslem4 15613 |
| Copyright terms: Public domain | W3C validator |