| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp4an | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
| Ref | Expression |
|---|---|
| mp4an.1 |
|
| mp4an.2 |
|
| mp4an.3 |
|
| mp4an.4 |
|
| mp4an.5 |
|
| Ref | Expression |
|---|---|
| mp4an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp4an.1 |
. . 3
| |
| 2 | mp4an.2 |
. . 3
| |
| 3 | 1, 2 | pm3.2i 272 |
. 2
|
| 4 | mp4an.3 |
. . 3
| |
| 5 | mp4an.4 |
. . 3
| |
| 6 | 4, 5 | pm3.2i 272 |
. 2
|
| 7 | mp4an.5 |
. 2
| |
| 8 | 3, 6, 7 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 1lt2nq 7490 m1p1sr 7844 m1m1sr 7845 0lt1sr 7849 axi2m1 7959 mul4i 8191 add4i 8208 addsub4i 8339 muladdi 8452 lt2addi 8554 le2addi 8555 mulap0i 8700 divap0i 8804 divmuldivapi 8816 divmul13api 8817 divadddivapi 8818 divdivdivapi 8819 subrecapi 8884 8th4div3 9227 iap0 9231 fldiv4p1lem1div2 10412 sqrt2gt1lt2 11231 abs3lemi 11339 3dvds2dec 12048 flodddiv4 12118 nprmi 12317 modxai 12610 sinhalfpilem 15111 cos0pilt1 15172 lgsdir2lem1 15353 lgsdir2lem5 15357 m1lgs 15410 2lgslem4 15428 |
| Copyright terms: Public domain | W3C validator |