| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp4an | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
| Ref | Expression |
|---|---|
| mp4an.1 |
|
| mp4an.2 |
|
| mp4an.3 |
|
| mp4an.4 |
|
| mp4an.5 |
|
| Ref | Expression |
|---|---|
| mp4an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp4an.1 |
. . 3
| |
| 2 | mp4an.2 |
. . 3
| |
| 3 | 1, 2 | pm3.2i 272 |
. 2
|
| 4 | mp4an.3 |
. . 3
| |
| 5 | mp4an.4 |
. . 3
| |
| 6 | 4, 5 | pm3.2i 272 |
. 2
|
| 7 | mp4an.5 |
. 2
| |
| 8 | 3, 6, 7 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 1lt2nq 7593 m1p1sr 7947 m1m1sr 7948 0lt1sr 7952 axi2m1 8062 mul4i 8294 add4i 8311 addsub4i 8442 muladdi 8555 lt2addi 8657 le2addi 8658 mulap0i 8803 divap0i 8907 divmuldivapi 8919 divmul13api 8920 divadddivapi 8921 divdivdivapi 8922 subrecapi 8987 8th4div3 9330 iap0 9334 fldiv4p1lem1div2 10525 sqrt2gt1lt2 11560 abs3lemi 11668 3dvds2dec 12377 flodddiv4 12447 nprmi 12646 modxai 12939 sinhalfpilem 15465 cos0pilt1 15526 lgsdir2lem1 15707 lgsdir2lem5 15711 m1lgs 15764 2lgslem4 15782 |
| Copyright terms: Public domain | W3C validator |