| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp4an | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.) |
| Ref | Expression |
|---|---|
| mp4an.1 |
|
| mp4an.2 |
|
| mp4an.3 |
|
| mp4an.4 |
|
| mp4an.5 |
|
| Ref | Expression |
|---|---|
| mp4an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp4an.1 |
. . 3
| |
| 2 | mp4an.2 |
. . 3
| |
| 3 | 1, 2 | pm3.2i 272 |
. 2
|
| 4 | mp4an.3 |
. . 3
| |
| 5 | mp4an.4 |
. . 3
| |
| 6 | 4, 5 | pm3.2i 272 |
. 2
|
| 7 | mp4an.5 |
. 2
| |
| 8 | 3, 6, 7 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 1lt2nq 7554 m1p1sr 7908 m1m1sr 7909 0lt1sr 7913 axi2m1 8023 mul4i 8255 add4i 8272 addsub4i 8403 muladdi 8516 lt2addi 8618 le2addi 8619 mulap0i 8764 divap0i 8868 divmuldivapi 8880 divmul13api 8881 divadddivapi 8882 divdivdivapi 8883 subrecapi 8948 8th4div3 9291 iap0 9295 fldiv4p1lem1div2 10485 sqrt2gt1lt2 11475 abs3lemi 11583 3dvds2dec 12292 flodddiv4 12362 nprmi 12561 modxai 12854 sinhalfpilem 15378 cos0pilt1 15439 lgsdir2lem1 15620 lgsdir2lem5 15624 m1lgs 15677 2lgslem4 15695 |
| Copyright terms: Public domain | W3C validator |