ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negned Unicode version

Theorem negned 8351
Description: If two complex numbers are unequal, so are their negatives. Contrapositive of neg11d 8366. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
negned.2  |-  ( ph  ->  B  e.  CC )
negned.3  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
negned  |-  ( ph  -> 
-u A  =/=  -u B
)

Proof of Theorem negned
StepHypRef Expression
1 negned.3 . 2  |-  ( ph  ->  A  =/=  B )
2 negidd.1 . . . 4  |-  ( ph  ->  A  e.  CC )
3 negned.2 . . . 4  |-  ( ph  ->  B  e.  CC )
42, 3neg11ad 8350 . . 3  |-  ( ph  ->  ( -u A  = 
-u B  <->  A  =  B ) )
54necon3bid 2408 . 2  |-  ( ph  ->  ( -u A  =/=  -u B  <->  A  =/=  B
) )
61, 5mpbird 167 1  |-  ( ph  -> 
-u A  =/=  -u B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    =/= wne 2367   CCcc 7894   -ucneg 8215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-neg 8217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator