Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddass2 | Unicode version |
Description: Associativity of extended real addition. See xaddass 9826 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddass2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1016 | . . . . . 6 | |
2 | xnegcl 9789 | . . . . . 6 | |
3 | 1, 2 | syl 14 | . . . . 5 |
4 | simp1r 1017 | . . . . . . 7 | |
5 | pnfxr 7972 | . . . . . . . . 9 | |
6 | xneg11 9791 | . . . . . . . . 9 | |
7 | 1, 5, 6 | sylancl 411 | . . . . . . . 8 |
8 | 7 | necon3bid 2381 | . . . . . . 7 |
9 | 4, 8 | mpbird 166 | . . . . . 6 |
10 | xnegpnf 9785 | . . . . . . 7 | |
11 | 10 | a1i 9 | . . . . . 6 |
12 | 9, 11 | neeqtrd 2368 | . . . . 5 |
13 | simp2l 1018 | . . . . . 6 | |
14 | xnegcl 9789 | . . . . . 6 | |
15 | 13, 14 | syl 14 | . . . . 5 |
16 | simp2r 1019 | . . . . . . 7 | |
17 | xneg11 9791 | . . . . . . . . 9 | |
18 | 13, 5, 17 | sylancl 411 | . . . . . . . 8 |
19 | 18 | necon3bid 2381 | . . . . . . 7 |
20 | 16, 19 | mpbird 166 | . . . . . 6 |
21 | 20, 11 | neeqtrd 2368 | . . . . 5 |
22 | simp3l 1020 | . . . . . 6 | |
23 | xnegcl 9789 | . . . . . 6 | |
24 | 22, 23 | syl 14 | . . . . 5 |
25 | simp3r 1021 | . . . . . . 7 | |
26 | xneg11 9791 | . . . . . . . . 9 | |
27 | 22, 5, 26 | sylancl 411 | . . . . . . . 8 |
28 | 27 | necon3bid 2381 | . . . . . . 7 |
29 | 25, 28 | mpbird 166 | . . . . . 6 |
30 | 29, 11 | neeqtrd 2368 | . . . . 5 |
31 | xaddass 9826 | . . . . 5 | |
32 | 3, 12, 15, 21, 24, 30, 31 | syl222anc 1249 | . . . 4 |
33 | xnegdi 9825 | . . . . . 6 | |
34 | 1, 13, 33 | syl2anc 409 | . . . . 5 |
35 | 34 | oveq1d 5868 | . . . 4 |
36 | xnegdi 9825 | . . . . . 6 | |
37 | 13, 22, 36 | syl2anc 409 | . . . . 5 |
38 | 37 | oveq2d 5869 | . . . 4 |
39 | 32, 35, 38 | 3eqtr4d 2213 | . . 3 |
40 | xaddcl 9817 | . . . . 5 | |
41 | 1, 13, 40 | syl2anc 409 | . . . 4 |
42 | xnegdi 9825 | . . . 4 | |
43 | 41, 22, 42 | syl2anc 409 | . . 3 |
44 | xaddcl 9817 | . . . . 5 | |
45 | 13, 22, 44 | syl2anc 409 | . . . 4 |
46 | xnegdi 9825 | . . . 4 | |
47 | 1, 45, 46 | syl2anc 409 | . . 3 |
48 | 39, 43, 47 | 3eqtr4d 2213 | . 2 |
49 | xaddcl 9817 | . . . 4 | |
50 | 41, 22, 49 | syl2anc 409 | . . 3 |
51 | xaddcl 9817 | . . . 4 | |
52 | 1, 45, 51 | syl2anc 409 | . . 3 |
53 | xneg11 9791 | . . 3 | |
54 | 50, 52, 53 | syl2anc 409 | . 2 |
55 | 48, 54 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wne 2340 (class class class)co 5853 cpnf 7951 cmnf 7952 cxr 7953 cxne 9726 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-sub 8092 df-neg 8093 df-xneg 9729 df-xadd 9730 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |