| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddass2 | Unicode version | ||
| Description: Associativity of extended real addition. See xaddass 10065 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddass2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1045 |
. . . . . 6
| |
| 2 | xnegcl 10028 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | simp1r 1046 |
. . . . . . 7
| |
| 5 | pnfxr 8199 |
. . . . . . . . 9
| |
| 6 | xneg11 10030 |
. . . . . . . . 9
| |
| 7 | 1, 5, 6 | sylancl 413 |
. . . . . . . 8
|
| 8 | 7 | necon3bid 2441 |
. . . . . . 7
|
| 9 | 4, 8 | mpbird 167 |
. . . . . 6
|
| 10 | xnegpnf 10024 |
. . . . . . 7
| |
| 11 | 10 | a1i 9 |
. . . . . 6
|
| 12 | 9, 11 | neeqtrd 2428 |
. . . . 5
|
| 13 | simp2l 1047 |
. . . . . 6
| |
| 14 | xnegcl 10028 |
. . . . . 6
| |
| 15 | 13, 14 | syl 14 |
. . . . 5
|
| 16 | simp2r 1048 |
. . . . . . 7
| |
| 17 | xneg11 10030 |
. . . . . . . . 9
| |
| 18 | 13, 5, 17 | sylancl 413 |
. . . . . . . 8
|
| 19 | 18 | necon3bid 2441 |
. . . . . . 7
|
| 20 | 16, 19 | mpbird 167 |
. . . . . 6
|
| 21 | 20, 11 | neeqtrd 2428 |
. . . . 5
|
| 22 | simp3l 1049 |
. . . . . 6
| |
| 23 | xnegcl 10028 |
. . . . . 6
| |
| 24 | 22, 23 | syl 14 |
. . . . 5
|
| 25 | simp3r 1050 |
. . . . . . 7
| |
| 26 | xneg11 10030 |
. . . . . . . . 9
| |
| 27 | 22, 5, 26 | sylancl 413 |
. . . . . . . 8
|
| 28 | 27 | necon3bid 2441 |
. . . . . . 7
|
| 29 | 25, 28 | mpbird 167 |
. . . . . 6
|
| 30 | 29, 11 | neeqtrd 2428 |
. . . . 5
|
| 31 | xaddass 10065 |
. . . . 5
| |
| 32 | 3, 12, 15, 21, 24, 30, 31 | syl222anc 1287 |
. . . 4
|
| 33 | xnegdi 10064 |
. . . . . 6
| |
| 34 | 1, 13, 33 | syl2anc 411 |
. . . . 5
|
| 35 | 34 | oveq1d 6016 |
. . . 4
|
| 36 | xnegdi 10064 |
. . . . . 6
| |
| 37 | 13, 22, 36 | syl2anc 411 |
. . . . 5
|
| 38 | 37 | oveq2d 6017 |
. . . 4
|
| 39 | 32, 35, 38 | 3eqtr4d 2272 |
. . 3
|
| 40 | xaddcl 10056 |
. . . . 5
| |
| 41 | 1, 13, 40 | syl2anc 411 |
. . . 4
|
| 42 | xnegdi 10064 |
. . . 4
| |
| 43 | 41, 22, 42 | syl2anc 411 |
. . 3
|
| 44 | xaddcl 10056 |
. . . . 5
| |
| 45 | 13, 22, 44 | syl2anc 411 |
. . . 4
|
| 46 | xnegdi 10064 |
. . . 4
| |
| 47 | 1, 45, 46 | syl2anc 411 |
. . 3
|
| 48 | 39, 43, 47 | 3eqtr4d 2272 |
. 2
|
| 49 | xaddcl 10056 |
. . . 4
| |
| 50 | 41, 22, 49 | syl2anc 411 |
. . 3
|
| 51 | xaddcl 10056 |
. . . 4
| |
| 52 | 1, 45, 51 | syl2anc 411 |
. . 3
|
| 53 | xneg11 10030 |
. . 3
| |
| 54 | 50, 52, 53 | syl2anc 411 |
. 2
|
| 55 | 48, 54 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-sub 8319 df-neg 8320 df-xneg 9968 df-xadd 9969 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |