| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddass2 | Unicode version | ||
| Description: Associativity of extended real addition. See xaddass 10026 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddass2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1024 |
. . . . . 6
| |
| 2 | xnegcl 9989 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | simp1r 1025 |
. . . . . . 7
| |
| 5 | pnfxr 8160 |
. . . . . . . . 9
| |
| 6 | xneg11 9991 |
. . . . . . . . 9
| |
| 7 | 1, 5, 6 | sylancl 413 |
. . . . . . . 8
|
| 8 | 7 | necon3bid 2419 |
. . . . . . 7
|
| 9 | 4, 8 | mpbird 167 |
. . . . . 6
|
| 10 | xnegpnf 9985 |
. . . . . . 7
| |
| 11 | 10 | a1i 9 |
. . . . . 6
|
| 12 | 9, 11 | neeqtrd 2406 |
. . . . 5
|
| 13 | simp2l 1026 |
. . . . . 6
| |
| 14 | xnegcl 9989 |
. . . . . 6
| |
| 15 | 13, 14 | syl 14 |
. . . . 5
|
| 16 | simp2r 1027 |
. . . . . . 7
| |
| 17 | xneg11 9991 |
. . . . . . . . 9
| |
| 18 | 13, 5, 17 | sylancl 413 |
. . . . . . . 8
|
| 19 | 18 | necon3bid 2419 |
. . . . . . 7
|
| 20 | 16, 19 | mpbird 167 |
. . . . . 6
|
| 21 | 20, 11 | neeqtrd 2406 |
. . . . 5
|
| 22 | simp3l 1028 |
. . . . . 6
| |
| 23 | xnegcl 9989 |
. . . . . 6
| |
| 24 | 22, 23 | syl 14 |
. . . . 5
|
| 25 | simp3r 1029 |
. . . . . . 7
| |
| 26 | xneg11 9991 |
. . . . . . . . 9
| |
| 27 | 22, 5, 26 | sylancl 413 |
. . . . . . . 8
|
| 28 | 27 | necon3bid 2419 |
. . . . . . 7
|
| 29 | 25, 28 | mpbird 167 |
. . . . . 6
|
| 30 | 29, 11 | neeqtrd 2406 |
. . . . 5
|
| 31 | xaddass 10026 |
. . . . 5
| |
| 32 | 3, 12, 15, 21, 24, 30, 31 | syl222anc 1266 |
. . . 4
|
| 33 | xnegdi 10025 |
. . . . . 6
| |
| 34 | 1, 13, 33 | syl2anc 411 |
. . . . 5
|
| 35 | 34 | oveq1d 5982 |
. . . 4
|
| 36 | xnegdi 10025 |
. . . . . 6
| |
| 37 | 13, 22, 36 | syl2anc 411 |
. . . . 5
|
| 38 | 37 | oveq2d 5983 |
. . . 4
|
| 39 | 32, 35, 38 | 3eqtr4d 2250 |
. . 3
|
| 40 | xaddcl 10017 |
. . . . 5
| |
| 41 | 1, 13, 40 | syl2anc 411 |
. . . 4
|
| 42 | xnegdi 10025 |
. . . 4
| |
| 43 | 41, 22, 42 | syl2anc 411 |
. . 3
|
| 44 | xaddcl 10017 |
. . . . 5
| |
| 45 | 13, 22, 44 | syl2anc 411 |
. . . 4
|
| 46 | xnegdi 10025 |
. . . 4
| |
| 47 | 1, 45, 46 | syl2anc 411 |
. . 3
|
| 48 | 39, 43, 47 | 3eqtr4d 2250 |
. 2
|
| 49 | xaddcl 10017 |
. . . 4
| |
| 50 | 41, 22, 49 | syl2anc 411 |
. . 3
|
| 51 | xaddcl 10017 |
. . . 4
| |
| 52 | 1, 45, 51 | syl2anc 411 |
. . 3
|
| 53 | xneg11 9991 |
. . 3
| |
| 54 | 50, 52, 53 | syl2anc 411 |
. 2
|
| 55 | 48, 54 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-sub 8280 df-neg 8281 df-xneg 9929 df-xadd 9930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |