| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddass2 | Unicode version | ||
| Description: Associativity of extended real addition. See xaddass 9944 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddass2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1023 |
. . . . . 6
| |
| 2 | xnegcl 9907 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | simp1r 1024 |
. . . . . . 7
| |
| 5 | pnfxr 8079 |
. . . . . . . . 9
| |
| 6 | xneg11 9909 |
. . . . . . . . 9
| |
| 7 | 1, 5, 6 | sylancl 413 |
. . . . . . . 8
|
| 8 | 7 | necon3bid 2408 |
. . . . . . 7
|
| 9 | 4, 8 | mpbird 167 |
. . . . . 6
|
| 10 | xnegpnf 9903 |
. . . . . . 7
| |
| 11 | 10 | a1i 9 |
. . . . . 6
|
| 12 | 9, 11 | neeqtrd 2395 |
. . . . 5
|
| 13 | simp2l 1025 |
. . . . . 6
| |
| 14 | xnegcl 9907 |
. . . . . 6
| |
| 15 | 13, 14 | syl 14 |
. . . . 5
|
| 16 | simp2r 1026 |
. . . . . . 7
| |
| 17 | xneg11 9909 |
. . . . . . . . 9
| |
| 18 | 13, 5, 17 | sylancl 413 |
. . . . . . . 8
|
| 19 | 18 | necon3bid 2408 |
. . . . . . 7
|
| 20 | 16, 19 | mpbird 167 |
. . . . . 6
|
| 21 | 20, 11 | neeqtrd 2395 |
. . . . 5
|
| 22 | simp3l 1027 |
. . . . . 6
| |
| 23 | xnegcl 9907 |
. . . . . 6
| |
| 24 | 22, 23 | syl 14 |
. . . . 5
|
| 25 | simp3r 1028 |
. . . . . . 7
| |
| 26 | xneg11 9909 |
. . . . . . . . 9
| |
| 27 | 22, 5, 26 | sylancl 413 |
. . . . . . . 8
|
| 28 | 27 | necon3bid 2408 |
. . . . . . 7
|
| 29 | 25, 28 | mpbird 167 |
. . . . . 6
|
| 30 | 29, 11 | neeqtrd 2395 |
. . . . 5
|
| 31 | xaddass 9944 |
. . . . 5
| |
| 32 | 3, 12, 15, 21, 24, 30, 31 | syl222anc 1265 |
. . . 4
|
| 33 | xnegdi 9943 |
. . . . . 6
| |
| 34 | 1, 13, 33 | syl2anc 411 |
. . . . 5
|
| 35 | 34 | oveq1d 5937 |
. . . 4
|
| 36 | xnegdi 9943 |
. . . . . 6
| |
| 37 | 13, 22, 36 | syl2anc 411 |
. . . . 5
|
| 38 | 37 | oveq2d 5938 |
. . . 4
|
| 39 | 32, 35, 38 | 3eqtr4d 2239 |
. . 3
|
| 40 | xaddcl 9935 |
. . . . 5
| |
| 41 | 1, 13, 40 | syl2anc 411 |
. . . 4
|
| 42 | xnegdi 9943 |
. . . 4
| |
| 43 | 41, 22, 42 | syl2anc 411 |
. . 3
|
| 44 | xaddcl 9935 |
. . . . 5
| |
| 45 | 13, 22, 44 | syl2anc 411 |
. . . 4
|
| 46 | xnegdi 9943 |
. . . 4
| |
| 47 | 1, 45, 46 | syl2anc 411 |
. . 3
|
| 48 | 39, 43, 47 | 3eqtr4d 2239 |
. 2
|
| 49 | xaddcl 9935 |
. . . 4
| |
| 50 | 41, 22, 49 | syl2anc 411 |
. . 3
|
| 51 | xaddcl 9935 |
. . . 4
| |
| 52 | 1, 45, 51 | syl2anc 411 |
. . 3
|
| 53 | xneg11 9909 |
. . 3
| |
| 54 | 50, 52, 53 | syl2anc 411 |
. 2
|
| 55 | 48, 54 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-sub 8199 df-neg 8200 df-xneg 9847 df-xadd 9848 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |