Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddass2 | Unicode version |
Description: Associativity of extended real addition. See xaddass 9805 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddass2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1011 | . . . . . 6 | |
2 | xnegcl 9768 | . . . . . 6 | |
3 | 1, 2 | syl 14 | . . . . 5 |
4 | simp1r 1012 | . . . . . . 7 | |
5 | pnfxr 7951 | . . . . . . . . 9 | |
6 | xneg11 9770 | . . . . . . . . 9 | |
7 | 1, 5, 6 | sylancl 410 | . . . . . . . 8 |
8 | 7 | necon3bid 2377 | . . . . . . 7 |
9 | 4, 8 | mpbird 166 | . . . . . 6 |
10 | xnegpnf 9764 | . . . . . . 7 | |
11 | 10 | a1i 9 | . . . . . 6 |
12 | 9, 11 | neeqtrd 2364 | . . . . 5 |
13 | simp2l 1013 | . . . . . 6 | |
14 | xnegcl 9768 | . . . . . 6 | |
15 | 13, 14 | syl 14 | . . . . 5 |
16 | simp2r 1014 | . . . . . . 7 | |
17 | xneg11 9770 | . . . . . . . . 9 | |
18 | 13, 5, 17 | sylancl 410 | . . . . . . . 8 |
19 | 18 | necon3bid 2377 | . . . . . . 7 |
20 | 16, 19 | mpbird 166 | . . . . . 6 |
21 | 20, 11 | neeqtrd 2364 | . . . . 5 |
22 | simp3l 1015 | . . . . . 6 | |
23 | xnegcl 9768 | . . . . . 6 | |
24 | 22, 23 | syl 14 | . . . . 5 |
25 | simp3r 1016 | . . . . . . 7 | |
26 | xneg11 9770 | . . . . . . . . 9 | |
27 | 22, 5, 26 | sylancl 410 | . . . . . . . 8 |
28 | 27 | necon3bid 2377 | . . . . . . 7 |
29 | 25, 28 | mpbird 166 | . . . . . 6 |
30 | 29, 11 | neeqtrd 2364 | . . . . 5 |
31 | xaddass 9805 | . . . . 5 | |
32 | 3, 12, 15, 21, 24, 30, 31 | syl222anc 1244 | . . . 4 |
33 | xnegdi 9804 | . . . . . 6 | |
34 | 1, 13, 33 | syl2anc 409 | . . . . 5 |
35 | 34 | oveq1d 5857 | . . . 4 |
36 | xnegdi 9804 | . . . . . 6 | |
37 | 13, 22, 36 | syl2anc 409 | . . . . 5 |
38 | 37 | oveq2d 5858 | . . . 4 |
39 | 32, 35, 38 | 3eqtr4d 2208 | . . 3 |
40 | xaddcl 9796 | . . . . 5 | |
41 | 1, 13, 40 | syl2anc 409 | . . . 4 |
42 | xnegdi 9804 | . . . 4 | |
43 | 41, 22, 42 | syl2anc 409 | . . 3 |
44 | xaddcl 9796 | . . . . 5 | |
45 | 13, 22, 44 | syl2anc 409 | . . . 4 |
46 | xnegdi 9804 | . . . 4 | |
47 | 1, 45, 46 | syl2anc 409 | . . 3 |
48 | 39, 43, 47 | 3eqtr4d 2208 | . 2 |
49 | xaddcl 9796 | . . . 4 | |
50 | 41, 22, 49 | syl2anc 409 | . . 3 |
51 | xaddcl 9796 | . . . 4 | |
52 | 1, 45, 51 | syl2anc 409 | . . 3 |
53 | xneg11 9770 | . . 3 | |
54 | 50, 52, 53 | syl2anc 409 | . 2 |
55 | 48, 54 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wne 2336 (class class class)co 5842 cpnf 7930 cmnf 7931 cxr 7932 cxne 9705 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-sub 8071 df-neg 8072 df-xneg 9708 df-xadd 9709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |