ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddass2 Unicode version

Theorem xaddass2 9872
Description: Associativity of extended real addition. See xaddass 9871 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass2  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )

Proof of Theorem xaddass2
StepHypRef Expression
1 simp1l 1021 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  A  e.  RR* )
2 xnegcl 9834 . . . . . 6  |-  ( A  e.  RR*  ->  -e
A  e.  RR* )
31, 2syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e A  e.  RR* )
4 simp1r 1022 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  A  =/= +oo )
5 pnfxr 8012 . . . . . . . . 9  |- +oo  e.  RR*
6 xneg11 9836 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e A  =  -e +oo  <->  A  = +oo ) )
71, 5, 6sylancl 413 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
A  =  -e +oo 
<->  A  = +oo )
)
87necon3bid 2388 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
A  =/=  -e +oo 
<->  A  =/= +oo )
)
94, 8mpbird 167 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e A  =/=  -e +oo )
10 xnegpnf 9830 . . . . . . 7  |-  -e +oo  = -oo
1110a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e +oo  = -oo )
129, 11neeqtrd 2375 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e A  =/= -oo )
13 simp2l 1023 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  B  e.  RR* )
14 xnegcl 9834 . . . . . 6  |-  ( B  e.  RR*  ->  -e
B  e.  RR* )
1513, 14syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e B  e.  RR* )
16 simp2r 1024 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  B  =/= +oo )
17 xneg11 9836 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e B  =  -e +oo  <->  B  = +oo ) )
1813, 5, 17sylancl 413 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
B  =  -e +oo 
<->  B  = +oo )
)
1918necon3bid 2388 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
B  =/=  -e +oo 
<->  B  =/= +oo )
)
2016, 19mpbird 167 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e B  =/=  -e +oo )
2120, 11neeqtrd 2375 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e B  =/= -oo )
22 simp3l 1025 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  C  e.  RR* )
23 xnegcl 9834 . . . . . 6  |-  ( C  e.  RR*  ->  -e
C  e.  RR* )
2422, 23syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e C  e.  RR* )
25 simp3r 1026 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  C  =/= +oo )
26 xneg11 9836 . . . . . . . . 9  |-  ( ( C  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e C  =  -e +oo  <->  C  = +oo ) )
2722, 5, 26sylancl 413 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
C  =  -e +oo 
<->  C  = +oo )
)
2827necon3bid 2388 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
C  =/=  -e +oo 
<->  C  =/= +oo )
)
2925, 28mpbird 167 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e C  =/=  -e +oo )
3029, 11neeqtrd 2375 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e C  =/= -oo )
31 xaddass 9871 . . . . 5  |-  ( ( (  -e A  e.  RR*  /\  -e
A  =/= -oo )  /\  (  -e B  e.  RR*  /\  -e
B  =/= -oo )  /\  (  -e C  e.  RR*  /\  -e
C  =/= -oo )
)  ->  ( (  -e A +e  -e B ) +e  -e C )  =  (  -e A +e
(  -e B +e  -e C ) ) )
323, 12, 15, 21, 24, 30, 31syl222anc 1254 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( (  -e A +e  -e B ) +e  -e C )  =  (  -e A +e
(  -e B +e  -e C ) ) )
33 xnegdi 9870 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
( A +e
B )  =  ( 
-e A +e  -e B ) )
341, 13, 33syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( A +e B )  =  (  -e A +e  -e B ) )
3534oveq1d 5892 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
( A +e
B ) +e  -e C )  =  ( (  -e
A +e  -e B ) +e  -e C ) )
36 xnegdi 9870 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  -e
( B +e
C )  =  ( 
-e B +e  -e C ) )
3713, 22, 36syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( B +e C )  =  (  -e B +e  -e C ) )
3837oveq2d 5893 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
A +e  -e ( B +e C ) )  =  (  -e
A +e ( 
-e B +e  -e C ) ) )
3932, 35, 383eqtr4d 2220 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
( A +e
B ) +e  -e C )  =  (  -e A +e  -e
( B +e
C ) ) )
40 xaddcl 9862 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
411, 13, 40syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( A +e B )  e.  RR* )
42 xnegdi 9870 . . . 4  |-  ( ( ( A +e
B )  e.  RR*  /\  C  e.  RR* )  -> 
-e ( ( A +e B ) +e C )  =  (  -e ( A +e B ) +e  -e C ) )
4341, 22, 42syl2anc 411 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( ( A +e
B ) +e
C )  =  ( 
-e ( A +e B ) +e  -e
C ) )
44 xaddcl 9862 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
4513, 22, 44syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( B +e C )  e.  RR* )
46 xnegdi 9870 . . . 4  |-  ( ( A  e.  RR*  /\  ( B +e C )  e.  RR* )  ->  -e
( A +e
( B +e
C ) )  =  (  -e A +e  -e
( B +e
C ) ) )
471, 45, 46syl2anc 411 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( A +e ( B +e C ) )  =  ( 
-e A +e  -e ( B +e C ) ) )
4839, 43, 473eqtr4d 2220 . 2  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( ( A +e
B ) +e
C )  =  -e ( A +e ( B +e C ) ) )
49 xaddcl 9862 . . . 4  |-  ( ( ( A +e
B )  e.  RR*  /\  C  e.  RR* )  ->  ( ( A +e B ) +e C )  e. 
RR* )
5041, 22, 49syl2anc 411 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( ( A +e B ) +e C )  e.  RR* )
51 xaddcl 9862 . . . 4  |-  ( ( A  e.  RR*  /\  ( B +e C )  e.  RR* )  ->  ( A +e ( B +e C ) )  e.  RR* )
521, 45, 51syl2anc 411 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( A +e ( B +e C ) )  e.  RR* )
53 xneg11 9836 . . 3  |-  ( ( ( ( A +e B ) +e C )  e. 
RR*  /\  ( A +e ( B +e C ) )  e.  RR* )  ->  (  -e ( ( A +e
B ) +e
C )  =  -e ( A +e ( B +e C ) )  <-> 
( ( A +e B ) +e C )  =  ( A +e
( B +e
C ) ) ) )
5450, 52, 53syl2anc 411 . 2  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
( ( A +e B ) +e C )  = 
-e ( A +e ( B +e C ) )  <->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) ) )
5548, 54mpbid 147 1  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347  (class class class)co 5877   +oocpnf 7991   -oocmnf 7992   RR*cxr 7993    -ecxne 9771   +ecxad 9772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-sub 8132  df-neg 8133  df-xneg 9774  df-xadd 9775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator