ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddass2 Unicode version

Theorem xaddass2 9806
Description: Associativity of extended real addition. See xaddass 9805 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass2  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )

Proof of Theorem xaddass2
StepHypRef Expression
1 simp1l 1011 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  A  e.  RR* )
2 xnegcl 9768 . . . . . 6  |-  ( A  e.  RR*  ->  -e
A  e.  RR* )
31, 2syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e A  e.  RR* )
4 simp1r 1012 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  A  =/= +oo )
5 pnfxr 7951 . . . . . . . . 9  |- +oo  e.  RR*
6 xneg11 9770 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e A  =  -e +oo  <->  A  = +oo ) )
71, 5, 6sylancl 410 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
A  =  -e +oo 
<->  A  = +oo )
)
87necon3bid 2377 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
A  =/=  -e +oo 
<->  A  =/= +oo )
)
94, 8mpbird 166 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e A  =/=  -e +oo )
10 xnegpnf 9764 . . . . . . 7  |-  -e +oo  = -oo
1110a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e +oo  = -oo )
129, 11neeqtrd 2364 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e A  =/= -oo )
13 simp2l 1013 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  B  e.  RR* )
14 xnegcl 9768 . . . . . 6  |-  ( B  e.  RR*  ->  -e
B  e.  RR* )
1513, 14syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e B  e.  RR* )
16 simp2r 1014 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  B  =/= +oo )
17 xneg11 9770 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e B  =  -e +oo  <->  B  = +oo ) )
1813, 5, 17sylancl 410 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
B  =  -e +oo 
<->  B  = +oo )
)
1918necon3bid 2377 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
B  =/=  -e +oo 
<->  B  =/= +oo )
)
2016, 19mpbird 166 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e B  =/=  -e +oo )
2120, 11neeqtrd 2364 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e B  =/= -oo )
22 simp3l 1015 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  C  e.  RR* )
23 xnegcl 9768 . . . . . 6  |-  ( C  e.  RR*  ->  -e
C  e.  RR* )
2422, 23syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e C  e.  RR* )
25 simp3r 1016 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  C  =/= +oo )
26 xneg11 9770 . . . . . . . . 9  |-  ( ( C  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e C  =  -e +oo  <->  C  = +oo ) )
2722, 5, 26sylancl 410 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
C  =  -e +oo 
<->  C  = +oo )
)
2827necon3bid 2377 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
C  =/=  -e +oo 
<->  C  =/= +oo )
)
2925, 28mpbird 166 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e C  =/=  -e +oo )
3029, 11neeqtrd 2364 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e C  =/= -oo )
31 xaddass 9805 . . . . 5  |-  ( ( (  -e A  e.  RR*  /\  -e
A  =/= -oo )  /\  (  -e B  e.  RR*  /\  -e
B  =/= -oo )  /\  (  -e C  e.  RR*  /\  -e
C  =/= -oo )
)  ->  ( (  -e A +e  -e B ) +e  -e C )  =  (  -e A +e
(  -e B +e  -e C ) ) )
323, 12, 15, 21, 24, 30, 31syl222anc 1244 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( (  -e A +e  -e B ) +e  -e C )  =  (  -e A +e
(  -e B +e  -e C ) ) )
33 xnegdi 9804 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
( A +e
B )  =  ( 
-e A +e  -e B ) )
341, 13, 33syl2anc 409 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( A +e B )  =  (  -e A +e  -e B ) )
3534oveq1d 5857 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
( A +e
B ) +e  -e C )  =  ( (  -e
A +e  -e B ) +e  -e C ) )
36 xnegdi 9804 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  -e
( B +e
C )  =  ( 
-e B +e  -e C ) )
3713, 22, 36syl2anc 409 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( B +e C )  =  (  -e B +e  -e C ) )
3837oveq2d 5858 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
A +e  -e ( B +e C ) )  =  (  -e
A +e ( 
-e B +e  -e C ) ) )
3932, 35, 383eqtr4d 2208 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
( A +e
B ) +e  -e C )  =  (  -e A +e  -e
( B +e
C ) ) )
40 xaddcl 9796 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
411, 13, 40syl2anc 409 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( A +e B )  e.  RR* )
42 xnegdi 9804 . . . 4  |-  ( ( ( A +e
B )  e.  RR*  /\  C  e.  RR* )  -> 
-e ( ( A +e B ) +e C )  =  (  -e ( A +e B ) +e  -e C ) )
4341, 22, 42syl2anc 409 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( ( A +e
B ) +e
C )  =  ( 
-e ( A +e B ) +e  -e
C ) )
44 xaddcl 9796 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
4513, 22, 44syl2anc 409 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( B +e C )  e.  RR* )
46 xnegdi 9804 . . . 4  |-  ( ( A  e.  RR*  /\  ( B +e C )  e.  RR* )  ->  -e
( A +e
( B +e
C ) )  =  (  -e A +e  -e
( B +e
C ) ) )
471, 45, 46syl2anc 409 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( A +e ( B +e C ) )  =  ( 
-e A +e  -e ( B +e C ) ) )
4839, 43, 473eqtr4d 2208 . 2  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( ( A +e
B ) +e
C )  =  -e ( A +e ( B +e C ) ) )
49 xaddcl 9796 . . . 4  |-  ( ( ( A +e
B )  e.  RR*  /\  C  e.  RR* )  ->  ( ( A +e B ) +e C )  e. 
RR* )
5041, 22, 49syl2anc 409 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( ( A +e B ) +e C )  e.  RR* )
51 xaddcl 9796 . . . 4  |-  ( ( A  e.  RR*  /\  ( B +e C )  e.  RR* )  ->  ( A +e ( B +e C ) )  e.  RR* )
521, 45, 51syl2anc 409 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( A +e ( B +e C ) )  e.  RR* )
53 xneg11 9770 . . 3  |-  ( ( ( ( A +e B ) +e C )  e. 
RR*  /\  ( A +e ( B +e C ) )  e.  RR* )  ->  (  -e ( ( A +e
B ) +e
C )  =  -e ( A +e ( B +e C ) )  <-> 
( ( A +e B ) +e C )  =  ( A +e
( B +e
C ) ) ) )
5450, 52, 53syl2anc 409 . 2  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
( ( A +e B ) +e C )  = 
-e ( A +e ( B +e C ) )  <->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) ) )
5548, 54mpbid 146 1  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336  (class class class)co 5842   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932    -ecxne 9705   +ecxad 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-sub 8071  df-neg 8072  df-xneg 9708  df-xadd 9709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator