ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddass2 Unicode version

Theorem xaddass2 10027
Description: Associativity of extended real addition. See xaddass 10026 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass2  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )

Proof of Theorem xaddass2
StepHypRef Expression
1 simp1l 1024 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  A  e.  RR* )
2 xnegcl 9989 . . . . . 6  |-  ( A  e.  RR*  ->  -e
A  e.  RR* )
31, 2syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e A  e.  RR* )
4 simp1r 1025 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  A  =/= +oo )
5 pnfxr 8160 . . . . . . . . 9  |- +oo  e.  RR*
6 xneg11 9991 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e A  =  -e +oo  <->  A  = +oo ) )
71, 5, 6sylancl 413 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
A  =  -e +oo 
<->  A  = +oo )
)
87necon3bid 2419 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
A  =/=  -e +oo 
<->  A  =/= +oo )
)
94, 8mpbird 167 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e A  =/=  -e +oo )
10 xnegpnf 9985 . . . . . . 7  |-  -e +oo  = -oo
1110a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e +oo  = -oo )
129, 11neeqtrd 2406 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e A  =/= -oo )
13 simp2l 1026 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  B  e.  RR* )
14 xnegcl 9989 . . . . . 6  |-  ( B  e.  RR*  ->  -e
B  e.  RR* )
1513, 14syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e B  e.  RR* )
16 simp2r 1027 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  B  =/= +oo )
17 xneg11 9991 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e B  =  -e +oo  <->  B  = +oo ) )
1813, 5, 17sylancl 413 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
B  =  -e +oo 
<->  B  = +oo )
)
1918necon3bid 2419 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
B  =/=  -e +oo 
<->  B  =/= +oo )
)
2016, 19mpbird 167 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e B  =/=  -e +oo )
2120, 11neeqtrd 2406 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e B  =/= -oo )
22 simp3l 1028 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  C  e.  RR* )
23 xnegcl 9989 . . . . . 6  |-  ( C  e.  RR*  ->  -e
C  e.  RR* )
2422, 23syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e C  e.  RR* )
25 simp3r 1029 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  C  =/= +oo )
26 xneg11 9991 . . . . . . . . 9  |-  ( ( C  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e C  =  -e +oo  <->  C  = +oo ) )
2722, 5, 26sylancl 413 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
C  =  -e +oo 
<->  C  = +oo )
)
2827necon3bid 2419 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
C  =/=  -e +oo 
<->  C  =/= +oo )
)
2925, 28mpbird 167 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e C  =/=  -e +oo )
3029, 11neeqtrd 2406 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e C  =/= -oo )
31 xaddass 10026 . . . . 5  |-  ( ( (  -e A  e.  RR*  /\  -e
A  =/= -oo )  /\  (  -e B  e.  RR*  /\  -e
B  =/= -oo )  /\  (  -e C  e.  RR*  /\  -e
C  =/= -oo )
)  ->  ( (  -e A +e  -e B ) +e  -e C )  =  (  -e A +e
(  -e B +e  -e C ) ) )
323, 12, 15, 21, 24, 30, 31syl222anc 1266 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( (  -e A +e  -e B ) +e  -e C )  =  (  -e A +e
(  -e B +e  -e C ) ) )
33 xnegdi 10025 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
( A +e
B )  =  ( 
-e A +e  -e B ) )
341, 13, 33syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( A +e B )  =  (  -e A +e  -e B ) )
3534oveq1d 5982 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
( A +e
B ) +e  -e C )  =  ( (  -e
A +e  -e B ) +e  -e C ) )
36 xnegdi 10025 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  -e
( B +e
C )  =  ( 
-e B +e  -e C ) )
3713, 22, 36syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( B +e C )  =  (  -e B +e  -e C ) )
3837oveq2d 5983 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
A +e  -e ( B +e C ) )  =  (  -e
A +e ( 
-e B +e  -e C ) ) )
3932, 35, 383eqtr4d 2250 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
( A +e
B ) +e  -e C )  =  (  -e A +e  -e
( B +e
C ) ) )
40 xaddcl 10017 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
411, 13, 40syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( A +e B )  e.  RR* )
42 xnegdi 10025 . . . 4  |-  ( ( ( A +e
B )  e.  RR*  /\  C  e.  RR* )  -> 
-e ( ( A +e B ) +e C )  =  (  -e ( A +e B ) +e  -e C ) )
4341, 22, 42syl2anc 411 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( ( A +e
B ) +e
C )  =  ( 
-e ( A +e B ) +e  -e
C ) )
44 xaddcl 10017 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
4513, 22, 44syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( B +e C )  e.  RR* )
46 xnegdi 10025 . . . 4  |-  ( ( A  e.  RR*  /\  ( B +e C )  e.  RR* )  ->  -e
( A +e
( B +e
C ) )  =  (  -e A +e  -e
( B +e
C ) ) )
471, 45, 46syl2anc 411 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( A +e ( B +e C ) )  =  ( 
-e A +e  -e ( B +e C ) ) )
4839, 43, 473eqtr4d 2250 . 2  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( ( A +e
B ) +e
C )  =  -e ( A +e ( B +e C ) ) )
49 xaddcl 10017 . . . 4  |-  ( ( ( A +e
B )  e.  RR*  /\  C  e.  RR* )  ->  ( ( A +e B ) +e C )  e. 
RR* )
5041, 22, 49syl2anc 411 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( ( A +e B ) +e C )  e.  RR* )
51 xaddcl 10017 . . . 4  |-  ( ( A  e.  RR*  /\  ( B +e C )  e.  RR* )  ->  ( A +e ( B +e C ) )  e.  RR* )
521, 45, 51syl2anc 411 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( A +e ( B +e C ) )  e.  RR* )
53 xneg11 9991 . . 3  |-  ( ( ( ( A +e B ) +e C )  e. 
RR*  /\  ( A +e ( B +e C ) )  e.  RR* )  ->  (  -e ( ( A +e
B ) +e
C )  =  -e ( A +e ( B +e C ) )  <-> 
( ( A +e B ) +e C )  =  ( A +e
( B +e
C ) ) ) )
5450, 52, 53syl2anc 411 . 2  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
( ( A +e B ) +e C )  = 
-e ( A +e ( B +e C ) )  <->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) ) )
5548, 54mpbid 147 1  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178    =/= wne 2378  (class class class)co 5967   +oocpnf 8139   -oocmnf 8140   RR*cxr 8141    -ecxne 9926   +ecxad 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-sub 8280  df-neg 8281  df-xneg 9929  df-xadd 9930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator