ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addneintrd Unicode version

Theorem addneintrd 7670
Description: Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad 7668. Consequence of addcand 7666. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1  |-  ( ph  ->  A  e.  CC )
addcand.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
addneintrd.4  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
addneintrd  |-  ( ph  ->  ( A  +  B
)  =/=  ( A  +  C ) )

Proof of Theorem addneintrd
StepHypRef Expression
1 addneintrd.4 . 2  |-  ( ph  ->  B  =/=  C )
2 addcand.1 . . . 4  |-  ( ph  ->  A  e.  CC )
3 addcand.2 . . . 4  |-  ( ph  ->  B  e.  CC )
4 addcand.3 . . . 4  |-  ( ph  ->  C  e.  CC )
52, 3, 4addcand 7666 . . 3  |-  ( ph  ->  ( ( A  +  B )  =  ( A  +  C )  <-> 
B  =  C ) )
65necon3bid 2296 . 2  |-  ( ph  ->  ( ( A  +  B )  =/=  ( A  +  C )  <->  B  =/=  C ) )
71, 6mpbird 165 1  |-  ( ph  ->  ( A  +  B
)  =/=  ( A  +  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1438    =/= wne 2255  (class class class)co 5652   CCcc 7348    + caddc 7353
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-resscn 7437  ax-1cn 7438  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-iota 4980  df-fv 5023  df-ov 5655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator