ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addneintrd Unicode version

Theorem addneintrd 8086
Description: Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad 8084. Consequence of addcand 8082. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1  |-  ( ph  ->  A  e.  CC )
addcand.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
addneintrd.4  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
addneintrd  |-  ( ph  ->  ( A  +  B
)  =/=  ( A  +  C ) )

Proof of Theorem addneintrd
StepHypRef Expression
1 addneintrd.4 . 2  |-  ( ph  ->  B  =/=  C )
2 addcand.1 . . . 4  |-  ( ph  ->  A  e.  CC )
3 addcand.2 . . . 4  |-  ( ph  ->  B  e.  CC )
4 addcand.3 . . . 4  |-  ( ph  ->  C  e.  CC )
52, 3, 4addcand 8082 . . 3  |-  ( ph  ->  ( ( A  +  B )  =  ( A  +  C )  <-> 
B  =  C ) )
65necon3bid 2377 . 2  |-  ( ph  ->  ( ( A  +  B )  =/=  ( A  +  C )  <->  B  =/=  C ) )
71, 6mpbird 166 1  |-  ( ph  ->  ( A  +  B
)  =/=  ( A  +  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136    =/= wne 2336  (class class class)co 5842   CCcc 7751    + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator