ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addneintrd Unicode version

Theorem addneintrd 8162
Description: Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad 8160. Consequence of addcand 8158. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1  |-  ( ph  ->  A  e.  CC )
addcand.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
addneintrd.4  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
addneintrd  |-  ( ph  ->  ( A  +  B
)  =/=  ( A  +  C ) )

Proof of Theorem addneintrd
StepHypRef Expression
1 addneintrd.4 . 2  |-  ( ph  ->  B  =/=  C )
2 addcand.1 . . . 4  |-  ( ph  ->  A  e.  CC )
3 addcand.2 . . . 4  |-  ( ph  ->  B  e.  CC )
4 addcand.3 . . . 4  |-  ( ph  ->  C  e.  CC )
52, 3, 4addcand 8158 . . 3  |-  ( ph  ->  ( ( A  +  B )  =  ( A  +  C )  <-> 
B  =  C ) )
65necon3bid 2400 . 2  |-  ( ph  ->  ( ( A  +  B )  =/=  ( A  +  C )  <->  B  =/=  C ) )
71, 6mpbird 167 1  |-  ( ph  ->  ( A  +  B
)  =/=  ( A  +  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2159    =/= wne 2359  (class class class)co 5890   CCcc 7826    + caddc 7831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170  ax-resscn 7920  ax-1cn 7921  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-addcom 7928  ax-addass 7930  ax-distr 7932  ax-i2m1 7933  ax-0id 7936  ax-rnegex 7937  ax-cnre 7939
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-v 2753  df-un 3147  df-in 3149  df-ss 3156  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-iota 5192  df-fv 5238  df-ov 5893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator