![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addneintrd | Unicode version |
Description: Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad 8160. Consequence of addcand 8158. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
addcand.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addcand.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addcand.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addneintrd.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addneintrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addneintrd.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addcand.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | addcand.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | addcand.3 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | addcand 8158 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | necon3bid 2400 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | mpbird 167 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 ax-resscn 7920 ax-1cn 7921 ax-icn 7923 ax-addcl 7924 ax-addrcl 7925 ax-mulcl 7926 ax-addcom 7928 ax-addass 7930 ax-distr 7932 ax-i2m1 7933 ax-0id 7936 ax-rnegex 7937 ax-cnre 7939 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-ral 2472 df-rex 2473 df-v 2753 df-un 3147 df-in 3149 df-ss 3156 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-iota 5192 df-fv 5238 df-ov 5893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |