ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addneintrd Unicode version

Theorem addneintrd 7943
Description: Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad 7941. Consequence of addcand 7939. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1  |-  ( ph  ->  A  e.  CC )
addcand.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
addneintrd.4  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
addneintrd  |-  ( ph  ->  ( A  +  B
)  =/=  ( A  +  C ) )

Proof of Theorem addneintrd
StepHypRef Expression
1 addneintrd.4 . 2  |-  ( ph  ->  B  =/=  C )
2 addcand.1 . . . 4  |-  ( ph  ->  A  e.  CC )
3 addcand.2 . . . 4  |-  ( ph  ->  B  e.  CC )
4 addcand.3 . . . 4  |-  ( ph  ->  C  e.  CC )
52, 3, 4addcand 7939 . . 3  |-  ( ph  ->  ( ( A  +  B )  =  ( A  +  C )  <-> 
B  =  C ) )
65necon3bid 2347 . 2  |-  ( ph  ->  ( ( A  +  B )  =/=  ( A  +  C )  <->  B  =/=  C ) )
71, 6mpbird 166 1  |-  ( ph  ->  ( A  +  B
)  =/=  ( A  +  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1480    =/= wne 2306  (class class class)co 5767   CCcc 7611    + caddc 7616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-resscn 7705  ax-1cn 7706  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-iota 5083  df-fv 5126  df-ov 5770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator