ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irraplemnn Unicode version

Theorem sqrt2irraplemnn 12320
Description: Lemma for sqrt2irrap 12321. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.)
Assertion
Ref Expression
sqrt2irraplemnn  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  2
) #  ( A  /  B ) )

Proof of Theorem sqrt2irraplemnn
StepHypRef Expression
1 simpl 109 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  A  e.  NN )
21nnsqcld 10768 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A ^ 2 )  e.  NN )
32nnred 8997 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A ^ 2 )  e.  RR )
4 0red 8022 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  e.  RR )
52nngt0d 9028 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <  ( A ^ 2 ) )
64, 3, 5ltled 8140 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <_  ( A ^ 2 ) )
7 simpr 110 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  B  e.  NN )
87nnsqcld 10768 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B ^ 2 )  e.  NN )
98nnrpd 9763 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B ^ 2 )  e.  RR+ )
103, 6, 9sqrtdivd 11315 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  (
( A ^ 2 )  /  ( B ^ 2 ) ) )  =  ( ( sqr `  ( A ^ 2 ) )  /  ( sqr `  ( B ^ 2 ) ) ) )
111nnred 8997 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  A  e.  RR )
121nngt0d 9028 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <  A )
134, 11, 12ltled 8140 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <_  A )
1411, 13sqrtsqd 11312 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  ( A ^ 2 ) )  =  A )
157nnred 8997 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  B  e.  RR )
167nngt0d 9028 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <  B )
174, 15, 16ltled 8140 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <_  B )
1815, 17sqrtsqd 11312 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  ( B ^ 2 ) )  =  B )
1914, 18oveq12d 5937 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( sqr `  ( A ^ 2 ) )  /  ( sqr `  ( B ^ 2 ) ) )  =  ( A  /  B ) )
2010, 19eqtrd 2226 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  (
( A ^ 2 )  /  ( B ^ 2 ) ) )  =  ( A  /  B ) )
21 sqne2sq 12318 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A ^ 2 )  =/=  ( 2  x.  ( B ^
2 ) ) )
222nncnd 8998 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A ^ 2 )  e.  CC )
23 2cnd 9057 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  2  e.  CC )
248nncnd 8998 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B ^ 2 )  e.  CC )
258nnap0d 9030 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B ^ 2 ) #  0 )
2622, 23, 24, 25divmulap3d 8846 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( ( A ^ 2 )  / 
( B ^ 2 ) )  =  2  <-> 
( A ^ 2 )  =  ( 2  x.  ( B ^
2 ) ) ) )
2726necon3bid 2405 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( ( A ^ 2 )  / 
( B ^ 2 ) )  =/=  2  <->  ( A ^ 2 )  =/=  ( 2  x.  ( B ^ 2 ) ) ) )
2821, 27mpbird 167 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A ^
2 )  /  ( B ^ 2 ) )  =/=  2 )
292nnzd 9441 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A ^ 2 )  e.  ZZ )
30 znq 9692 . . . . . . 7  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  ( B ^ 2 )  e.  NN )  -> 
( ( A ^
2 )  /  ( B ^ 2 ) )  e.  QQ )
3129, 8, 30syl2anc 411 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A ^
2 )  /  ( B ^ 2 ) )  e.  QQ )
32 2z 9348 . . . . . . 7  |-  2  e.  ZZ
33 zq 9694 . . . . . . 7  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
3432, 33mp1i 10 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  2  e.  QQ )
35 qapne 9707 . . . . . 6  |-  ( ( ( ( A ^
2 )  /  ( B ^ 2 ) )  e.  QQ  /\  2  e.  QQ )  ->  (
( ( A ^
2 )  /  ( B ^ 2 ) ) #  2  <->  ( ( A ^ 2 )  / 
( B ^ 2 ) )  =/=  2
) )
3631, 34, 35syl2anc 411 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( ( A ^ 2 )  / 
( B ^ 2 ) ) #  2  <->  (
( A ^ 2 )  /  ( B ^ 2 ) )  =/=  2 ) )
3728, 36mpbird 167 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A ^
2 )  /  ( B ^ 2 ) ) #  2 )
38 qre 9693 . . . . . 6  |-  ( ( ( A ^ 2 )  /  ( B ^ 2 ) )  e.  QQ  ->  (
( A ^ 2 )  /  ( B ^ 2 ) )  e.  RR )
3931, 38syl 14 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A ^
2 )  /  ( B ^ 2 ) )  e.  RR )
408nnred 8997 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B ^ 2 )  e.  RR )
418nngt0d 9028 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <  ( B ^ 2 ) )
423, 40, 5, 41divgt0d 8956 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
434, 39, 42ltled 8140 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <_  ( ( A ^ 2 )  / 
( B ^ 2 ) ) )
44 2re 9054 . . . . . 6  |-  2  e.  RR
4544a1i 9 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  2  e.  RR )
46 0le2 9074 . . . . . 6  |-  0  <_  2
4746a1i 9 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <_  2 )
48 sqrt11ap 11185 . . . . 5  |-  ( ( ( ( ( A ^ 2 )  / 
( B ^ 2 ) )  e.  RR  /\  0  <_  ( ( A ^ 2 )  / 
( B ^ 2 ) ) )  /\  ( 2  e.  RR  /\  0  <_  2 ) )  ->  ( ( sqr `  ( ( A ^ 2 )  / 
( B ^ 2 ) ) ) #  ( sqr `  2 )  <-> 
( ( A ^
2 )  /  ( B ^ 2 ) ) #  2 ) )
4939, 43, 45, 47, 48syl22anc 1250 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( sqr `  (
( A ^ 2 )  /  ( B ^ 2 ) ) ) #  ( sqr `  2
)  <->  ( ( A ^ 2 )  / 
( B ^ 2 ) ) #  2 ) )
5037, 49mpbird 167 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  (
( A ^ 2 )  /  ( B ^ 2 ) ) ) #  ( sqr `  2
) )
5120, 50eqbrtrrd 4054 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  /  B
) #  ( sqr `  2
) )
52 nnz 9339 . . . . 5  |-  ( A  e.  NN  ->  A  e.  ZZ )
53 znq 9692 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B
)  e.  QQ )
5452, 53sylan 283 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  /  B
)  e.  QQ )
55 qcn 9702 . . . 4  |-  ( ( A  /  B )  e.  QQ  ->  ( A  /  B )  e.  CC )
5654, 55syl 14 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  /  B
)  e.  CC )
57 sqrt2re 12304 . . . . 5  |-  ( sqr `  2 )  e.  RR
5857recni 8033 . . . 4  |-  ( sqr `  2 )  e.  CC
5958a1i 9 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  2
)  e.  CC )
60 apsym 8627 . . 3  |-  ( ( ( A  /  B
)  e.  CC  /\  ( sqr `  2 )  e.  CC )  -> 
( ( A  /  B ) #  ( sqr `  2 )  <->  ( sqr `  2 ) #  ( A  /  B ) ) )
6156, 59, 60syl2anc 411 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  /  B ) #  ( sqr `  2 )  <->  ( sqr `  2 ) #  ( A  /  B ) ) )
6251, 61mpbid 147 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  2
) #  ( A  /  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164    =/= wne 2364   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874    x. cmul 7879    <_ cle 8057   # cap 8602    / cdiv 8693   NNcn 8984   2c2 9035   ZZcz 9320   QQcq 9687   ^cexp 10612   sqrcsqrt 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-2o 6472  df-er 6589  df-en 6797  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934  df-gcd 12083  df-prm 12249
This theorem is referenced by:  sqrt2irrap  12321
  Copyright terms: Public domain W3C validator