ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qapne Unicode version

Theorem qapne 9834
Description: Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
qapne  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A #  B  <->  A  =/=  B ) )

Proof of Theorem qapne
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9817 . . . 4  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
21biimpi 120 . . 3  |-  ( B  e.  QQ  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
32adantl 277 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
4 simplll 533 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  A  e.  QQ )
5 elq 9817 . . . . . 6  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
64, 5sylib 122 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
7 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  x  e.  ZZ )
87zcnd 9570 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  x  e.  CC )
9 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
z  e.  ZZ )
109ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  z  e.  ZZ )
1110zcnd 9570 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  z  e.  CC )
12 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  ->  w  e.  NN )
1312ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w  e.  NN )
1413nncnd 9124 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w  e.  CC )
15 nnap0 9139 . . . . . . . . . . . . . . 15  |-  ( w  e.  NN  ->  w #  0 )
1613, 15syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w #  0 )
1711, 14, 16divclapd 8937 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
z  /  w )  e.  CC )
18 simplrr 536 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y  e.  NN )
1918nncnd 9124 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y  e.  CC )
2017, 19mulcld 8167 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( z  /  w
)  x.  y )  e.  CC )
21 nnap0 9139 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y #  0 )
2218, 21syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y #  0 )
2319, 22recclapd 8928 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  y )  e.  CC )
2419, 22recap0d 8929 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  y ) #  0 )
25 apmul1 8935 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( ( z  /  w )  x.  y
)  e.  CC  /\  ( ( 1  / 
y )  e.  CC  /\  ( 1  /  y
) #  0 ) )  ->  ( x #  ( ( z  /  w
)  x.  y )  <-> 
( x  x.  (
1  /  y ) ) #  ( ( ( z  /  w )  x.  y )  x.  ( 1  /  y
) ) ) )
268, 20, 23, 24, 25syl112anc 1275 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x #  ( ( z  /  w )  x.  y )  <->  ( x  x.  ( 1  /  y
) ) #  ( ( ( z  /  w
)  x.  y )  x.  ( 1  / 
y ) ) ) )
278, 19, 22divrecapd 8940 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  /  y )  =  ( x  x.  ( 1  /  y
) ) )
2827eqcomd 2235 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  ( 1  /  y ) )  =  ( x  / 
y ) )
2917, 19, 23mulassd 8170 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( ( z  /  w )  x.  y
)  x.  ( 1  /  y ) )  =  ( ( z  /  w )  x.  ( y  x.  (
1  /  y ) ) ) )
3019, 22recidapd 8930 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  ( 1  /  y ) )  =  1 )
3130oveq2d 6017 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( z  /  w
)  x.  ( y  x.  ( 1  / 
y ) ) )  =  ( ( z  /  w )  x.  1 ) )
3217mulridd 8163 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( z  /  w
)  x.  1 )  =  ( z  /  w ) )
3329, 31, 323eqtrd 2266 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( ( z  /  w )  x.  y
)  x.  ( 1  /  y ) )  =  ( z  /  w ) )
3428, 33breq12d 4096 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  (
1  /  y ) ) #  ( ( ( z  /  w )  x.  y )  x.  ( 1  /  y
) )  <->  ( x  /  y ) #  ( z  /  w ) ) )
3526, 34bitrd 188 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x #  ( ( z  /  w )  x.  y )  <->  ( x  /  y ) #  ( z  /  w ) ) )
3613nnzd 9568 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w  e.  ZZ )
377, 36zmulcld 9575 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  w )  e.  ZZ )
3837zcnd 9570 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  w )  e.  CC )
3918nnzd 9568 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y  e.  ZZ )
4039, 10zmulcld 9575 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  z )  e.  ZZ )
4140zcnd 9570 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  z )  e.  CC )
4214, 16recclapd 8928 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  w )  e.  CC )
4314, 16recap0d 8929 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  w ) #  0 )
44 apmul1 8935 . . . . . . . . . . . . 13  |-  ( ( ( x  x.  w
)  e.  CC  /\  ( y  x.  z
)  e.  CC  /\  ( ( 1  /  w )  e.  CC  /\  ( 1  /  w
) #  0 ) )  ->  ( ( x  x.  w ) #  ( y  x.  z )  <-> 
( ( x  x.  w )  x.  (
1  /  w ) ) #  ( ( y  x.  z )  x.  ( 1  /  w
) ) ) )
4538, 41, 42, 43, 44syl112anc 1275 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  ( (
x  x.  w )  x.  ( 1  /  w ) ) #  ( ( y  x.  z
)  x.  ( 1  /  w ) ) ) )
468, 14, 42mulassd 8170 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  x.  ( 1  /  w ) )  =  ( x  x.  ( w  x.  (
1  /  w ) ) ) )
4714, 16recidapd 8930 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
w  x.  ( 1  /  w ) )  =  1 )
4847oveq2d 6017 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  ( w  x.  ( 1  /  w ) ) )  =  ( x  x.  1 ) )
498mulridd 8163 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  1 )  =  x )
5046, 48, 493eqtrd 2266 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  x.  ( 1  /  w ) )  =  x )
5150breq1d 4093 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( ( x  x.  w )  x.  (
1  /  w ) ) #  ( ( y  x.  z )  x.  ( 1  /  w
) )  <->  x #  (
( y  x.  z
)  x.  ( 1  /  w ) ) ) )
5245, 51bitrd 188 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  x #  (
( y  x.  z
)  x.  ( 1  /  w ) ) ) )
5319, 11, 42mulassd 8170 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( y  x.  z
)  x.  ( 1  /  w ) )  =  ( y  x.  ( z  x.  (
1  /  w ) ) ) )
5411, 14, 16divrecapd 8940 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
z  /  w )  =  ( z  x.  ( 1  /  w
) ) )
5554oveq2d 6017 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  ( z  /  w ) )  =  ( y  x.  ( z  x.  (
1  /  w ) ) ) )
5619, 17mulcomd 8168 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  ( z  /  w ) )  =  ( ( z  /  w )  x.  y ) )
5753, 55, 563eqtr2d 2268 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( y  x.  z
)  x.  ( 1  /  w ) )  =  ( ( z  /  w )  x.  y ) )
5857breq2d 4095 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x #  ( ( y  x.  z )  x.  ( 1  /  w
) )  <->  x #  (
( z  /  w
)  x.  y ) ) )
5952, 58bitrd 188 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  x #  (
( z  /  w
)  x.  y ) ) )
60 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  A  =  ( x  / 
y ) )
61 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  B  =  ( z  /  w ) )
6260, 61breq12d 4096 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A #  B  <->  ( x  / 
y ) #  ( z  /  w ) ) )
6335, 59, 623bitr4d 220 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  A #  B
) )
64 zapne 9521 . . . . . . . . . 10  |-  ( ( ( x  x.  w
)  e.  ZZ  /\  ( y  x.  z
)  e.  ZZ )  ->  ( ( x  x.  w ) #  ( y  x.  z )  <-> 
( x  x.  w
)  =/=  ( y  x.  z ) ) )
6537, 40, 64syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  ( x  x.  w )  =/=  (
y  x.  z ) ) )
6663, 65bitr3d 190 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A #  B  <->  ( x  x.  w )  =/=  (
y  x.  z ) ) )
6763notbid 671 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( -.  ( x  x.  w
) #  ( y  x.  z )  <->  -.  A #  B ) )
68 apti 8769 . . . . . . . . . . 11  |-  ( ( ( x  x.  w
)  e.  CC  /\  ( y  x.  z
)  e.  CC )  ->  ( ( x  x.  w )  =  ( y  x.  z
)  <->  -.  ( x  x.  w ) #  ( y  x.  z ) ) )
6938, 41, 68syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =  ( y  x.  z )  <->  -.  (
x  x.  w ) #  ( y  x.  z
) ) )
70 qcn 9829 . . . . . . . . . . . . 13  |-  ( A  e.  QQ  ->  A  e.  CC )
7170ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  ->  A  e.  CC )
7271ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  A  e.  CC )
7361, 17eqeltrd 2306 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  B  e.  CC )
74 apti 8769 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)
7572, 73, 74syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A  =  B  <->  -.  A #  B ) )
7667, 69, 753bitr4d 220 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =  ( y  x.  z )  <->  A  =  B ) )
7776necon3bid 2441 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =/=  ( y  x.  z )  <->  A  =/=  B ) )
7866, 77bitrd 188 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A #  B  <->  A  =/=  B
) )
7978ex 115 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( A  =  ( x  / 
y )  ->  ( A #  B  <->  A  =/=  B
) ) )
8079rexlimdvva 2656 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( A #  B  <->  A  =/=  B
) ) )
816, 80mpd 13 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  ( A #  B  <->  A  =/=  B
) )
8281ex 115 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( B  =  ( z  /  w )  ->  ( A #  B  <->  A  =/=  B ) ) )
8382rexlimdvva 2656 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w )  ->  ( A #  B  <->  A  =/=  B ) ) )
843, 83mpd 13 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A #  B  <->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    =/= wne 2400   E.wrex 2509   class class class wbr 4083  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    x. cmul 8004   # cap 8728    / cdiv 8819   NNcn 9110   ZZcz 9446   QQcq 9814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-n0 9370  df-z 9447  df-q 9815
This theorem is referenced by:  qltlen  9835  qlttri2  9836  qreccl  9837  qdivcl  9838  irrmul  9842  irrmulap  9843  flqltnz  10507  modqmulnn  10564  qexpclz  10782  sqrt2irraplemnn  12701  pceu  12818  pcdiv  12825  pcqdiv  12830  pcexp  12832  pcaddlem  12862  qexpz  12875  apdiff  16416
  Copyright terms: Public domain W3C validator