ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qapne Unicode version

Theorem qapne 9424
Description: Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
qapne  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A #  B  <->  A  =/=  B ) )

Proof of Theorem qapne
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9407 . . . 4  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
21biimpi 119 . . 3  |-  ( B  e.  QQ  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
32adantl 275 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
4 simplll 522 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  A  e.  QQ )
5 elq 9407 . . . . . 6  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
64, 5sylib 121 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
7 simplrl 524 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  x  e.  ZZ )
87zcnd 9167 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  x  e.  CC )
9 simprl 520 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
z  e.  ZZ )
109ad3antrrr 483 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  z  e.  ZZ )
1110zcnd 9167 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  z  e.  CC )
12 simprr 521 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  ->  w  e.  NN )
1312ad3antrrr 483 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w  e.  NN )
1413nncnd 8727 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w  e.  CC )
15 nnap0 8742 . . . . . . . . . . . . . . 15  |-  ( w  e.  NN  ->  w #  0 )
1613, 15syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w #  0 )
1711, 14, 16divclapd 8543 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
z  /  w )  e.  CC )
18 simplrr 525 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y  e.  NN )
1918nncnd 8727 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y  e.  CC )
2017, 19mulcld 7779 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( z  /  w
)  x.  y )  e.  CC )
21 nnap0 8742 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y #  0 )
2218, 21syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y #  0 )
2319, 22recclapd 8534 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  y )  e.  CC )
2419, 22recap0d 8535 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  y ) #  0 )
25 apmul1 8541 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( ( z  /  w )  x.  y
)  e.  CC  /\  ( ( 1  / 
y )  e.  CC  /\  ( 1  /  y
) #  0 ) )  ->  ( x #  ( ( z  /  w
)  x.  y )  <-> 
( x  x.  (
1  /  y ) ) #  ( ( ( z  /  w )  x.  y )  x.  ( 1  /  y
) ) ) )
268, 20, 23, 24, 25syl112anc 1220 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x #  ( ( z  /  w )  x.  y )  <->  ( x  x.  ( 1  /  y
) ) #  ( ( ( z  /  w
)  x.  y )  x.  ( 1  / 
y ) ) ) )
278, 19, 22divrecapd 8546 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  /  y )  =  ( x  x.  ( 1  /  y
) ) )
2827eqcomd 2143 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  ( 1  /  y ) )  =  ( x  / 
y ) )
2917, 19, 23mulassd 7782 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( ( z  /  w )  x.  y
)  x.  ( 1  /  y ) )  =  ( ( z  /  w )  x.  ( y  x.  (
1  /  y ) ) ) )
3019, 22recidapd 8536 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  ( 1  /  y ) )  =  1 )
3130oveq2d 5783 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( z  /  w
)  x.  ( y  x.  ( 1  / 
y ) ) )  =  ( ( z  /  w )  x.  1 ) )
3217mulid1d 7776 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( z  /  w
)  x.  1 )  =  ( z  /  w ) )
3329, 31, 323eqtrd 2174 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( ( z  /  w )  x.  y
)  x.  ( 1  /  y ) )  =  ( z  /  w ) )
3428, 33breq12d 3937 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  (
1  /  y ) ) #  ( ( ( z  /  w )  x.  y )  x.  ( 1  /  y
) )  <->  ( x  /  y ) #  ( z  /  w ) ) )
3526, 34bitrd 187 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x #  ( ( z  /  w )  x.  y )  <->  ( x  /  y ) #  ( z  /  w ) ) )
3613nnzd 9165 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w  e.  ZZ )
377, 36zmulcld 9172 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  w )  e.  ZZ )
3837zcnd 9167 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  w )  e.  CC )
3918nnzd 9165 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y  e.  ZZ )
4039, 10zmulcld 9172 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  z )  e.  ZZ )
4140zcnd 9167 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  z )  e.  CC )
4214, 16recclapd 8534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  w )  e.  CC )
4314, 16recap0d 8535 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  w ) #  0 )
44 apmul1 8541 . . . . . . . . . . . . 13  |-  ( ( ( x  x.  w
)  e.  CC  /\  ( y  x.  z
)  e.  CC  /\  ( ( 1  /  w )  e.  CC  /\  ( 1  /  w
) #  0 ) )  ->  ( ( x  x.  w ) #  ( y  x.  z )  <-> 
( ( x  x.  w )  x.  (
1  /  w ) ) #  ( ( y  x.  z )  x.  ( 1  /  w
) ) ) )
4538, 41, 42, 43, 44syl112anc 1220 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  ( (
x  x.  w )  x.  ( 1  /  w ) ) #  ( ( y  x.  z
)  x.  ( 1  /  w ) ) ) )
468, 14, 42mulassd 7782 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  x.  ( 1  /  w ) )  =  ( x  x.  ( w  x.  (
1  /  w ) ) ) )
4714, 16recidapd 8536 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
w  x.  ( 1  /  w ) )  =  1 )
4847oveq2d 5783 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  ( w  x.  ( 1  /  w ) ) )  =  ( x  x.  1 ) )
498mulid1d 7776 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  1 )  =  x )
5046, 48, 493eqtrd 2174 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  x.  ( 1  /  w ) )  =  x )
5150breq1d 3934 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( ( x  x.  w )  x.  (
1  /  w ) ) #  ( ( y  x.  z )  x.  ( 1  /  w
) )  <->  x #  (
( y  x.  z
)  x.  ( 1  /  w ) ) ) )
5245, 51bitrd 187 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  x #  (
( y  x.  z
)  x.  ( 1  /  w ) ) ) )
5319, 11, 42mulassd 7782 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( y  x.  z
)  x.  ( 1  /  w ) )  =  ( y  x.  ( z  x.  (
1  /  w ) ) ) )
5411, 14, 16divrecapd 8546 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
z  /  w )  =  ( z  x.  ( 1  /  w
) ) )
5554oveq2d 5783 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  ( z  /  w ) )  =  ( y  x.  ( z  x.  (
1  /  w ) ) ) )
5619, 17mulcomd 7780 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  ( z  /  w ) )  =  ( ( z  /  w )  x.  y ) )
5753, 55, 563eqtr2d 2176 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( y  x.  z
)  x.  ( 1  /  w ) )  =  ( ( z  /  w )  x.  y ) )
5857breq2d 3936 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x #  ( ( y  x.  z )  x.  ( 1  /  w
) )  <->  x #  (
( z  /  w
)  x.  y ) ) )
5952, 58bitrd 187 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  x #  (
( z  /  w
)  x.  y ) ) )
60 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  A  =  ( x  / 
y ) )
61 simpllr 523 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  B  =  ( z  /  w ) )
6260, 61breq12d 3937 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A #  B  <->  ( x  / 
y ) #  ( z  /  w ) ) )
6335, 59, 623bitr4d 219 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  A #  B
) )
64 zapne 9118 . . . . . . . . . 10  |-  ( ( ( x  x.  w
)  e.  ZZ  /\  ( y  x.  z
)  e.  ZZ )  ->  ( ( x  x.  w ) #  ( y  x.  z )  <-> 
( x  x.  w
)  =/=  ( y  x.  z ) ) )
6537, 40, 64syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  ( x  x.  w )  =/=  (
y  x.  z ) ) )
6663, 65bitr3d 189 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A #  B  <->  ( x  x.  w )  =/=  (
y  x.  z ) ) )
6763notbid 656 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( -.  ( x  x.  w
) #  ( y  x.  z )  <->  -.  A #  B ) )
68 apti 8377 . . . . . . . . . . 11  |-  ( ( ( x  x.  w
)  e.  CC  /\  ( y  x.  z
)  e.  CC )  ->  ( ( x  x.  w )  =  ( y  x.  z
)  <->  -.  ( x  x.  w ) #  ( y  x.  z ) ) )
6938, 41, 68syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =  ( y  x.  z )  <->  -.  (
x  x.  w ) #  ( y  x.  z
) ) )
70 qcn 9419 . . . . . . . . . . . . 13  |-  ( A  e.  QQ  ->  A  e.  CC )
7170ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  ->  A  e.  CC )
7271ad3antrrr 483 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  A  e.  CC )
7361, 17eqeltrd 2214 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  B  e.  CC )
74 apti 8377 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)
7572, 73, 74syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A  =  B  <->  -.  A #  B ) )
7667, 69, 753bitr4d 219 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =  ( y  x.  z )  <->  A  =  B ) )
7776necon3bid 2347 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =/=  ( y  x.  z )  <->  A  =/=  B ) )
7866, 77bitrd 187 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A #  B  <->  A  =/=  B
) )
7978ex 114 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( A  =  ( x  / 
y )  ->  ( A #  B  <->  A  =/=  B
) ) )
8079rexlimdvva 2555 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( A #  B  <->  A  =/=  B
) ) )
816, 80mpd 13 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  ( A #  B  <->  A  =/=  B
) )
8281ex 114 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( B  =  ( z  /  w )  ->  ( A #  B  <->  A  =/=  B ) ) )
8382rexlimdvva 2555 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w )  ->  ( A #  B  <->  A  =/=  B ) ) )
843, 83mpd 13 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A #  B  <->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480    =/= wne 2306   E.wrex 2415   class class class wbr 3924  (class class class)co 5767   CCcc 7611   0cc0 7613   1c1 7614    x. cmul 7618   # cap 8336    / cdiv 8425   NNcn 8713   ZZcz 9047   QQcq 9404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-q 9405
This theorem is referenced by:  qltlen  9425  qlttri2  9426  qreccl  9427  qdivcl  9428  irrmul  9432  flqltnz  10053  modqmulnn  10108  qexpclz  10307  sqrt2irraplemnn  11846
  Copyright terms: Public domain W3C validator