ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qapne Unicode version

Theorem qapne 9653
Description: Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
qapne  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A #  B  <->  A  =/=  B ) )

Proof of Theorem qapne
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9636 . . . 4  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
21biimpi 120 . . 3  |-  ( B  e.  QQ  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
32adantl 277 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
4 simplll 533 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  A  e.  QQ )
5 elq 9636 . . . . . 6  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
64, 5sylib 122 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
7 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  x  e.  ZZ )
87zcnd 9390 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  x  e.  CC )
9 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
z  e.  ZZ )
109ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  z  e.  ZZ )
1110zcnd 9390 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  z  e.  CC )
12 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  ->  w  e.  NN )
1312ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w  e.  NN )
1413nncnd 8947 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w  e.  CC )
15 nnap0 8962 . . . . . . . . . . . . . . 15  |-  ( w  e.  NN  ->  w #  0 )
1613, 15syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w #  0 )
1711, 14, 16divclapd 8761 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
z  /  w )  e.  CC )
18 simplrr 536 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y  e.  NN )
1918nncnd 8947 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y  e.  CC )
2017, 19mulcld 7992 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( z  /  w
)  x.  y )  e.  CC )
21 nnap0 8962 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y #  0 )
2218, 21syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y #  0 )
2319, 22recclapd 8752 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  y )  e.  CC )
2419, 22recap0d 8753 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  y ) #  0 )
25 apmul1 8759 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( ( z  /  w )  x.  y
)  e.  CC  /\  ( ( 1  / 
y )  e.  CC  /\  ( 1  /  y
) #  0 ) )  ->  ( x #  ( ( z  /  w
)  x.  y )  <-> 
( x  x.  (
1  /  y ) ) #  ( ( ( z  /  w )  x.  y )  x.  ( 1  /  y
) ) ) )
268, 20, 23, 24, 25syl112anc 1252 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x #  ( ( z  /  w )  x.  y )  <->  ( x  x.  ( 1  /  y
) ) #  ( ( ( z  /  w
)  x.  y )  x.  ( 1  / 
y ) ) ) )
278, 19, 22divrecapd 8764 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  /  y )  =  ( x  x.  ( 1  /  y
) ) )
2827eqcomd 2193 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  ( 1  /  y ) )  =  ( x  / 
y ) )
2917, 19, 23mulassd 7995 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( ( z  /  w )  x.  y
)  x.  ( 1  /  y ) )  =  ( ( z  /  w )  x.  ( y  x.  (
1  /  y ) ) ) )
3019, 22recidapd 8754 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  ( 1  /  y ) )  =  1 )
3130oveq2d 5904 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( z  /  w
)  x.  ( y  x.  ( 1  / 
y ) ) )  =  ( ( z  /  w )  x.  1 ) )
3217mulridd 7988 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( z  /  w
)  x.  1 )  =  ( z  /  w ) )
3329, 31, 323eqtrd 2224 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( ( z  /  w )  x.  y
)  x.  ( 1  /  y ) )  =  ( z  /  w ) )
3428, 33breq12d 4028 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  (
1  /  y ) ) #  ( ( ( z  /  w )  x.  y )  x.  ( 1  /  y
) )  <->  ( x  /  y ) #  ( z  /  w ) ) )
3526, 34bitrd 188 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x #  ( ( z  /  w )  x.  y )  <->  ( x  /  y ) #  ( z  /  w ) ) )
3613nnzd 9388 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w  e.  ZZ )
377, 36zmulcld 9395 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  w )  e.  ZZ )
3837zcnd 9390 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  w )  e.  CC )
3918nnzd 9388 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y  e.  ZZ )
4039, 10zmulcld 9395 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  z )  e.  ZZ )
4140zcnd 9390 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  z )  e.  CC )
4214, 16recclapd 8752 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  w )  e.  CC )
4314, 16recap0d 8753 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  w ) #  0 )
44 apmul1 8759 . . . . . . . . . . . . 13  |-  ( ( ( x  x.  w
)  e.  CC  /\  ( y  x.  z
)  e.  CC  /\  ( ( 1  /  w )  e.  CC  /\  ( 1  /  w
) #  0 ) )  ->  ( ( x  x.  w ) #  ( y  x.  z )  <-> 
( ( x  x.  w )  x.  (
1  /  w ) ) #  ( ( y  x.  z )  x.  ( 1  /  w
) ) ) )
4538, 41, 42, 43, 44syl112anc 1252 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  ( (
x  x.  w )  x.  ( 1  /  w ) ) #  ( ( y  x.  z
)  x.  ( 1  /  w ) ) ) )
468, 14, 42mulassd 7995 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  x.  ( 1  /  w ) )  =  ( x  x.  ( w  x.  (
1  /  w ) ) ) )
4714, 16recidapd 8754 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
w  x.  ( 1  /  w ) )  =  1 )
4847oveq2d 5904 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  ( w  x.  ( 1  /  w ) ) )  =  ( x  x.  1 ) )
498mulridd 7988 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  1 )  =  x )
5046, 48, 493eqtrd 2224 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  x.  ( 1  /  w ) )  =  x )
5150breq1d 4025 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( ( x  x.  w )  x.  (
1  /  w ) ) #  ( ( y  x.  z )  x.  ( 1  /  w
) )  <->  x #  (
( y  x.  z
)  x.  ( 1  /  w ) ) ) )
5245, 51bitrd 188 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  x #  (
( y  x.  z
)  x.  ( 1  /  w ) ) ) )
5319, 11, 42mulassd 7995 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( y  x.  z
)  x.  ( 1  /  w ) )  =  ( y  x.  ( z  x.  (
1  /  w ) ) ) )
5411, 14, 16divrecapd 8764 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
z  /  w )  =  ( z  x.  ( 1  /  w
) ) )
5554oveq2d 5904 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  ( z  /  w ) )  =  ( y  x.  ( z  x.  (
1  /  w ) ) ) )
5619, 17mulcomd 7993 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  ( z  /  w ) )  =  ( ( z  /  w )  x.  y ) )
5753, 55, 563eqtr2d 2226 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( y  x.  z
)  x.  ( 1  /  w ) )  =  ( ( z  /  w )  x.  y ) )
5857breq2d 4027 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x #  ( ( y  x.  z )  x.  ( 1  /  w
) )  <->  x #  (
( z  /  w
)  x.  y ) ) )
5952, 58bitrd 188 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  x #  (
( z  /  w
)  x.  y ) ) )
60 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  A  =  ( x  / 
y ) )
61 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  B  =  ( z  /  w ) )
6260, 61breq12d 4028 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A #  B  <->  ( x  / 
y ) #  ( z  /  w ) ) )
6335, 59, 623bitr4d 220 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  A #  B
) )
64 zapne 9341 . . . . . . . . . 10  |-  ( ( ( x  x.  w
)  e.  ZZ  /\  ( y  x.  z
)  e.  ZZ )  ->  ( ( x  x.  w ) #  ( y  x.  z )  <-> 
( x  x.  w
)  =/=  ( y  x.  z ) ) )
6537, 40, 64syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  ( x  x.  w )  =/=  (
y  x.  z ) ) )
6663, 65bitr3d 190 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A #  B  <->  ( x  x.  w )  =/=  (
y  x.  z ) ) )
6763notbid 668 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( -.  ( x  x.  w
) #  ( y  x.  z )  <->  -.  A #  B ) )
68 apti 8593 . . . . . . . . . . 11  |-  ( ( ( x  x.  w
)  e.  CC  /\  ( y  x.  z
)  e.  CC )  ->  ( ( x  x.  w )  =  ( y  x.  z
)  <->  -.  ( x  x.  w ) #  ( y  x.  z ) ) )
6938, 41, 68syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =  ( y  x.  z )  <->  -.  (
x  x.  w ) #  ( y  x.  z
) ) )
70 qcn 9648 . . . . . . . . . . . . 13  |-  ( A  e.  QQ  ->  A  e.  CC )
7170ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  ->  A  e.  CC )
7271ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  A  e.  CC )
7361, 17eqeltrd 2264 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  B  e.  CC )
74 apti 8593 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)
7572, 73, 74syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A  =  B  <->  -.  A #  B ) )
7667, 69, 753bitr4d 220 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =  ( y  x.  z )  <->  A  =  B ) )
7776necon3bid 2398 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =/=  ( y  x.  z )  <->  A  =/=  B ) )
7866, 77bitrd 188 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A #  B  <->  A  =/=  B
) )
7978ex 115 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( A  =  ( x  / 
y )  ->  ( A #  B  <->  A  =/=  B
) ) )
8079rexlimdvva 2612 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( A #  B  <->  A  =/=  B
) ) )
816, 80mpd 13 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  ( A #  B  <->  A  =/=  B
) )
8281ex 115 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( B  =  ( z  /  w )  ->  ( A #  B  <->  A  =/=  B ) ) )
8382rexlimdvva 2612 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w )  ->  ( A #  B  <->  A  =/=  B ) ) )
843, 83mpd 13 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A #  B  <->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158    =/= wne 2357   E.wrex 2466   class class class wbr 4015  (class class class)co 5888   CCcc 7823   0cc0 7825   1c1 7826    x. cmul 7830   # cap 8552    / cdiv 8643   NNcn 8933   ZZcz 9267   QQcq 9633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-n0 9191  df-z 9268  df-q 9634
This theorem is referenced by:  qltlen  9654  qlttri2  9655  qreccl  9656  qdivcl  9657  irrmul  9661  flqltnz  10301  modqmulnn  10356  qexpclz  10555  sqrt2irraplemnn  12193  pceu  12309  pcdiv  12316  pcqdiv  12321  pcexp  12323  pcaddlem  12352  qexpz  12364  apdiff  15093
  Copyright terms: Public domain W3C validator