ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qapne Unicode version

Theorem qapne 9638
Description: Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
qapne  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A #  B  <->  A  =/=  B ) )

Proof of Theorem qapne
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9621 . . . 4  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
21biimpi 120 . . 3  |-  ( B  e.  QQ  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
32adantl 277 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
4 simplll 533 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  A  e.  QQ )
5 elq 9621 . . . . . 6  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
64, 5sylib 122 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
7 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  x  e.  ZZ )
87zcnd 9375 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  x  e.  CC )
9 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
z  e.  ZZ )
109ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  z  e.  ZZ )
1110zcnd 9375 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  z  e.  CC )
12 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  ->  w  e.  NN )
1312ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w  e.  NN )
1413nncnd 8932 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w  e.  CC )
15 nnap0 8947 . . . . . . . . . . . . . . 15  |-  ( w  e.  NN  ->  w #  0 )
1613, 15syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w #  0 )
1711, 14, 16divclapd 8746 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
z  /  w )  e.  CC )
18 simplrr 536 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y  e.  NN )
1918nncnd 8932 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y  e.  CC )
2017, 19mulcld 7977 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( z  /  w
)  x.  y )  e.  CC )
21 nnap0 8947 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y #  0 )
2218, 21syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y #  0 )
2319, 22recclapd 8737 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  y )  e.  CC )
2419, 22recap0d 8738 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  y ) #  0 )
25 apmul1 8744 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( ( z  /  w )  x.  y
)  e.  CC  /\  ( ( 1  / 
y )  e.  CC  /\  ( 1  /  y
) #  0 ) )  ->  ( x #  ( ( z  /  w
)  x.  y )  <-> 
( x  x.  (
1  /  y ) ) #  ( ( ( z  /  w )  x.  y )  x.  ( 1  /  y
) ) ) )
268, 20, 23, 24, 25syl112anc 1242 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x #  ( ( z  /  w )  x.  y )  <->  ( x  x.  ( 1  /  y
) ) #  ( ( ( z  /  w
)  x.  y )  x.  ( 1  / 
y ) ) ) )
278, 19, 22divrecapd 8749 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  /  y )  =  ( x  x.  ( 1  /  y
) ) )
2827eqcomd 2183 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  ( 1  /  y ) )  =  ( x  / 
y ) )
2917, 19, 23mulassd 7980 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( ( z  /  w )  x.  y
)  x.  ( 1  /  y ) )  =  ( ( z  /  w )  x.  ( y  x.  (
1  /  y ) ) ) )
3019, 22recidapd 8739 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  ( 1  /  y ) )  =  1 )
3130oveq2d 5890 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( z  /  w
)  x.  ( y  x.  ( 1  / 
y ) ) )  =  ( ( z  /  w )  x.  1 ) )
3217mulridd 7973 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( z  /  w
)  x.  1 )  =  ( z  /  w ) )
3329, 31, 323eqtrd 2214 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( ( z  /  w )  x.  y
)  x.  ( 1  /  y ) )  =  ( z  /  w ) )
3428, 33breq12d 4016 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  (
1  /  y ) ) #  ( ( ( z  /  w )  x.  y )  x.  ( 1  /  y
) )  <->  ( x  /  y ) #  ( z  /  w ) ) )
3526, 34bitrd 188 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x #  ( ( z  /  w )  x.  y )  <->  ( x  /  y ) #  ( z  /  w ) ) )
3613nnzd 9373 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  w  e.  ZZ )
377, 36zmulcld 9380 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  w )  e.  ZZ )
3837zcnd 9375 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  w )  e.  CC )
3918nnzd 9373 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  y  e.  ZZ )
4039, 10zmulcld 9380 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  z )  e.  ZZ )
4140zcnd 9375 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  z )  e.  CC )
4214, 16recclapd 8737 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  w )  e.  CC )
4314, 16recap0d 8738 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
1  /  w ) #  0 )
44 apmul1 8744 . . . . . . . . . . . . 13  |-  ( ( ( x  x.  w
)  e.  CC  /\  ( y  x.  z
)  e.  CC  /\  ( ( 1  /  w )  e.  CC  /\  ( 1  /  w
) #  0 ) )  ->  ( ( x  x.  w ) #  ( y  x.  z )  <-> 
( ( x  x.  w )  x.  (
1  /  w ) ) #  ( ( y  x.  z )  x.  ( 1  /  w
) ) ) )
4538, 41, 42, 43, 44syl112anc 1242 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  ( (
x  x.  w )  x.  ( 1  /  w ) ) #  ( ( y  x.  z
)  x.  ( 1  /  w ) ) ) )
468, 14, 42mulassd 7980 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  x.  ( 1  /  w ) )  =  ( x  x.  ( w  x.  (
1  /  w ) ) ) )
4714, 16recidapd 8739 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
w  x.  ( 1  /  w ) )  =  1 )
4847oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  ( w  x.  ( 1  /  w ) ) )  =  ( x  x.  1 ) )
498mulridd 7973 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x  x.  1 )  =  x )
5046, 48, 493eqtrd 2214 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  x.  ( 1  /  w ) )  =  x )
5150breq1d 4013 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( ( x  x.  w )  x.  (
1  /  w ) ) #  ( ( y  x.  z )  x.  ( 1  /  w
) )  <->  x #  (
( y  x.  z
)  x.  ( 1  /  w ) ) ) )
5245, 51bitrd 188 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  x #  (
( y  x.  z
)  x.  ( 1  /  w ) ) ) )
5319, 11, 42mulassd 7980 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( y  x.  z
)  x.  ( 1  /  w ) )  =  ( y  x.  ( z  x.  (
1  /  w ) ) ) )
5411, 14, 16divrecapd 8749 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
z  /  w )  =  ( z  x.  ( 1  /  w
) ) )
5554oveq2d 5890 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  ( z  /  w ) )  =  ( y  x.  ( z  x.  (
1  /  w ) ) ) )
5619, 17mulcomd 7978 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
y  x.  ( z  /  w ) )  =  ( ( z  /  w )  x.  y ) )
5753, 55, 563eqtr2d 2216 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( y  x.  z
)  x.  ( 1  /  w ) )  =  ( ( z  /  w )  x.  y ) )
5857breq2d 4015 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
x #  ( ( y  x.  z )  x.  ( 1  /  w
) )  <->  x #  (
( z  /  w
)  x.  y ) ) )
5952, 58bitrd 188 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  x #  (
( z  /  w
)  x.  y ) ) )
60 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  A  =  ( x  / 
y ) )
61 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  B  =  ( z  /  w ) )
6260, 61breq12d 4016 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A #  B  <->  ( x  / 
y ) #  ( z  /  w ) ) )
6335, 59, 623bitr4d 220 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  A #  B
) )
64 zapne 9326 . . . . . . . . . 10  |-  ( ( ( x  x.  w
)  e.  ZZ  /\  ( y  x.  z
)  e.  ZZ )  ->  ( ( x  x.  w ) #  ( y  x.  z )  <-> 
( x  x.  w
)  =/=  ( y  x.  z ) ) )
6537, 40, 64syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
) #  ( y  x.  z )  <->  ( x  x.  w )  =/=  (
y  x.  z ) ) )
6663, 65bitr3d 190 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A #  B  <->  ( x  x.  w )  =/=  (
y  x.  z ) ) )
6763notbid 667 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( -.  ( x  x.  w
) #  ( y  x.  z )  <->  -.  A #  B ) )
68 apti 8578 . . . . . . . . . . 11  |-  ( ( ( x  x.  w
)  e.  CC  /\  ( y  x.  z
)  e.  CC )  ->  ( ( x  x.  w )  =  ( y  x.  z
)  <->  -.  ( x  x.  w ) #  ( y  x.  z ) ) )
6938, 41, 68syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =  ( y  x.  z )  <->  -.  (
x  x.  w ) #  ( y  x.  z
) ) )
70 qcn 9633 . . . . . . . . . . . . 13  |-  ( A  e.  QQ  ->  A  e.  CC )
7170ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  ->  A  e.  CC )
7271ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  A  e.  CC )
7361, 17eqeltrd 2254 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  B  e.  CC )
74 apti 8578 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)
7572, 73, 74syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A  =  B  <->  -.  A #  B ) )
7667, 69, 753bitr4d 220 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =  ( y  x.  z )  <->  A  =  B ) )
7776necon3bid 2388 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =/=  ( y  x.  z )  <->  A  =/=  B ) )
7866, 77bitrd 188 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  A  =  ( x  /  y
) )  ->  ( A #  B  <->  A  =/=  B
) )
7978ex 115 . . . . . 6  |-  ( ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( A  =  ( x  / 
y )  ->  ( A #  B  <->  A  =/=  B
) ) )
8079rexlimdvva 2602 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( A #  B  <->  A  =/=  B
) ) )
816, 80mpd 13 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  B  =  ( z  /  w
) )  ->  ( A #  B  <->  A  =/=  B
) )
8281ex 115 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( B  =  ( z  /  w )  ->  ( A #  B  <->  A  =/=  B ) ) )
8382rexlimdvva 2602 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w )  ->  ( A #  B  <->  A  =/=  B ) ) )
843, 83mpd 13 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A #  B  <->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    =/= wne 2347   E.wrex 2456   class class class wbr 4003  (class class class)co 5874   CCcc 7808   0cc0 7810   1c1 7811    x. cmul 7815   # cap 8537    / cdiv 8628   NNcn 8918   ZZcz 9252   QQcq 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-n0 9176  df-z 9253  df-q 9619
This theorem is referenced by:  qltlen  9639  qlttri2  9640  qreccl  9641  qdivcl  9642  irrmul  9646  flqltnz  10286  modqmulnn  10341  qexpclz  10540  sqrt2irraplemnn  12178  pceu  12294  pcdiv  12301  pcqdiv  12306  pcexp  12308  pcaddlem  12337  qexpz  12349  apdiff  14766
  Copyright terms: Public domain W3C validator