ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashneq0 Unicode version

Theorem fihashneq0 10871
Description: Two ways of saying a finite set is not empty. Also, "A is inhabited" would be equivalent by fin0 6946. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
Assertion
Ref Expression
fihashneq0  |-  ( A  e.  Fin  ->  (
0  <  ( `  A
)  <->  A  =/=  (/) ) )

Proof of Theorem fihashneq0
StepHypRef Expression
1 hashcl 10858 . . . 4  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
21nn0zd 9443 . . 3  |-  ( A  e.  Fin  ->  ( `  A )  e.  ZZ )
3 0zd 9335 . . 3  |-  ( A  e.  Fin  ->  0  e.  ZZ )
4 zapne 9397 . . 3  |-  ( ( ( `  A )  e.  ZZ  /\  0  e.  ZZ )  ->  (
( `  A ) #  0  <-> 
( `  A )  =/=  0 ) )
52, 3, 4syl2anc 411 . 2  |-  ( A  e.  Fin  ->  (
( `  A ) #  0  <-> 
( `  A )  =/=  0 ) )
6 nn0re 9255 . . . 4  |-  ( ( `  A )  e.  NN0  ->  ( `  A )  e.  RR )
7 nn0ge0 9271 . . . 4  |-  ( ( `  A )  e.  NN0  ->  0  <_  ( `  A
) )
8 ap0gt0 8664 . . . 4  |-  ( ( ( `  A )  e.  RR  /\  0  <_ 
( `  A ) )  ->  ( ( `  A
) #  0  <->  0  <  ( `  A ) ) )
96, 7, 8syl2anc 411 . . 3  |-  ( ( `  A )  e.  NN0  ->  ( ( `  A
) #  0  <->  0  <  ( `  A ) ) )
101, 9syl 14 . 2  |-  ( A  e.  Fin  ->  (
( `  A ) #  0  <->  0  <  ( `  A
) ) )
11 fihasheq0 10870 . . 3  |-  ( A  e.  Fin  ->  (
( `  A )  =  0  <->  A  =  (/) ) )
1211necon3bid 2408 . 2  |-  ( A  e.  Fin  ->  (
( `  A )  =/=  0  <->  A  =/=  (/) ) )
135, 10, 123bitr3d 218 1  |-  ( A  e.  Fin  ->  (
0  <  ( `  A
)  <->  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2167    =/= wne 2367   (/)c0 3450   class class class wbr 4033   ` cfv 5258   Fincfn 6799   RRcr 7876   0cc0 7877    < clt 8059    <_ cle 8060   # cap 8605   NN0cn0 9246   ZZcz 9323  ♯chash 10852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-inn 8988  df-n0 9247  df-z 9324  df-uz 9599  df-fz 10081  df-ihash 10853
This theorem is referenced by:  wrdlenge1n0  10953
  Copyright terms: Public domain W3C validator