ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashneq0 Unicode version

Theorem fihashneq0 10776
Description: Two ways of saying a finite set is not empty. Also, "A is inhabited" would be equivalent by fin0 6887. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
Assertion
Ref Expression
fihashneq0  |-  ( A  e.  Fin  ->  (
0  <  ( `  A
)  <->  A  =/=  (/) ) )

Proof of Theorem fihashneq0
StepHypRef Expression
1 hashcl 10763 . . . 4  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
21nn0zd 9375 . . 3  |-  ( A  e.  Fin  ->  ( `  A )  e.  ZZ )
3 0zd 9267 . . 3  |-  ( A  e.  Fin  ->  0  e.  ZZ )
4 zapne 9329 . . 3  |-  ( ( ( `  A )  e.  ZZ  /\  0  e.  ZZ )  ->  (
( `  A ) #  0  <-> 
( `  A )  =/=  0 ) )
52, 3, 4syl2anc 411 . 2  |-  ( A  e.  Fin  ->  (
( `  A ) #  0  <-> 
( `  A )  =/=  0 ) )
6 nn0re 9187 . . . 4  |-  ( ( `  A )  e.  NN0  ->  ( `  A )  e.  RR )
7 nn0ge0 9203 . . . 4  |-  ( ( `  A )  e.  NN0  ->  0  <_  ( `  A
) )
8 ap0gt0 8599 . . . 4  |-  ( ( ( `  A )  e.  RR  /\  0  <_ 
( `  A ) )  ->  ( ( `  A
) #  0  <->  0  <  ( `  A ) ) )
96, 7, 8syl2anc 411 . . 3  |-  ( ( `  A )  e.  NN0  ->  ( ( `  A
) #  0  <->  0  <  ( `  A ) ) )
101, 9syl 14 . 2  |-  ( A  e.  Fin  ->  (
( `  A ) #  0  <->  0  <  ( `  A
) ) )
11 fihasheq0 10775 . . 3  |-  ( A  e.  Fin  ->  (
( `  A )  =  0  <->  A  =  (/) ) )
1211necon3bid 2388 . 2  |-  ( A  e.  Fin  ->  (
( `  A )  =/=  0  <->  A  =/=  (/) ) )
135, 10, 123bitr3d 218 1  |-  ( A  e.  Fin  ->  (
0  <  ( `  A
)  <->  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2148    =/= wne 2347   (/)c0 3424   class class class wbr 4005   ` cfv 5218   Fincfn 6742   RRcr 7812   0cc0 7813    < clt 7994    <_ cle 7995   # cap 8540   NN0cn0 9178   ZZcz 9255  ♯chash 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-recs 6308  df-frec 6394  df-1o 6419  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-ihash 10758
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator