Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  neap0mkv Unicode version

Theorem neap0mkv 15713
Description: The analytic Markov principle can be expressed either with two arbitrary real numbers, or one arbitrary number and zero. (Contributed by Jim Kingdon, 23-Feb-2025.)
Assertion
Ref Expression
neap0mkv  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  <->  A. x  e.  RR  ( x  =/=  0  ->  x #  0 ) )
Distinct variable group:    x, y

Proof of Theorem neap0mkv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0re 8026 . . . 4  |-  0  e.  RR
2 neeq2 2381 . . . . . 6  |-  ( y  =  0  ->  (
x  =/=  y  <->  x  =/=  0 ) )
3 breq2 4037 . . . . . 6  |-  ( y  =  0  ->  (
x #  y  <->  x #  0
) )
42, 3imbi12d 234 . . . . 5  |-  ( y  =  0  ->  (
( x  =/=  y  ->  x #  y )  <->  ( x  =/=  0  ->  x #  0 ) ) )
54rspcv 2864 . . . 4  |-  ( 0  e.  RR  ->  ( A. y  e.  RR  ( x  =/=  y  ->  x #  y )  -> 
( x  =/=  0  ->  x #  0 ) ) )
61, 5ax-mp 5 . . 3  |-  ( A. y  e.  RR  (
x  =/=  y  ->  x #  y )  ->  (
x  =/=  0  ->  x #  0 ) )
76ralimi 2560 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  A. x  e.  RR  ( x  =/=  0  ->  x #  0
) )
8 neeq1 2380 . . . . 5  |-  ( x  =  z  ->  (
x  =/=  0  <->  z  =/=  0 ) )
9 breq1 4036 . . . . 5  |-  ( x  =  z  ->  (
x #  0  <->  z #  0
) )
108, 9imbi12d 234 . . . 4  |-  ( x  =  z  ->  (
( x  =/=  0  ->  x #  0 )  <->  ( z  =/=  0  ->  z #  0 ) ) )
1110cbvralv 2729 . . 3  |-  ( A. x  e.  RR  (
x  =/=  0  ->  x #  0 )  <->  A. z  e.  RR  ( z  =/=  0  ->  z #  0
) )
12 neeq1 2380 . . . . . . 7  |-  ( z  =  ( x  -  y )  ->  (
z  =/=  0  <->  (
x  -  y )  =/=  0 ) )
13 breq1 4036 . . . . . . 7  |-  ( z  =  ( x  -  y )  ->  (
z #  0  <->  ( x  -  y ) #  0 ) )
1412, 13imbi12d 234 . . . . . 6  |-  ( z  =  ( x  -  y )  ->  (
( z  =/=  0  ->  z #  0 )  <->  ( (
x  -  y )  =/=  0  ->  (
x  -  y ) #  0 ) ) )
15 simpl 109 . . . . . 6  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A. z  e.  RR  ( z  =/=  0  ->  z #  0
) )
16 simprl 529 . . . . . . 7  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
17 simprr 531 . . . . . . 7  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  RR )
1816, 17resubcld 8407 . . . . . 6  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  -  y )  e.  RR )
1914, 15, 18rspcdva 2873 . . . . 5  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  -  y )  =/=  0  ->  (
x  -  y ) #  0 ) )
2016recnd 8055 . . . . . . 7  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  CC )
2117recnd 8055 . . . . . . 7  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  CC )
2220, 21subeq0ad 8347 . . . . . 6  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  -  y )  =  0  <->  x  =  y ) )
2322necon3bid 2408 . . . . 5  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  -  y )  =/=  0  <->  x  =/=  y ) )
24 subap0 8670 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y ) #  0  <->  x #  y
) )
2520, 21, 24syl2anc 411 . . . . 5  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  -  y ) #  0  <->  x #  y )
)
2619, 23, 253imtr3d 202 . . . 4  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  =/=  y  ->  x #  y ) )
2726ralrimivva 2579 . . 3  |-  ( A. z  e.  RR  (
z  =/=  0  -> 
z #  0 )  ->  A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y ) )
2811, 27sylbi 121 . 2  |-  ( A. x  e.  RR  (
x  =/=  0  ->  x #  0 )  ->  A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
) )
297, 28impbii 126 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  <->  A. x  e.  RR  ( x  =/=  0  ->  x #  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   class class class wbr 4033  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879    - cmin 8197   # cap 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609
This theorem is referenced by:  ltlenmkv  15714
  Copyright terms: Public domain W3C validator