Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  neap0mkv Unicode version

Theorem neap0mkv 16210
Description: The analytic Markov principle can be expressed either with two arbitrary real numbers, or one arbitrary number and zero. (Contributed by Jim Kingdon, 23-Feb-2025.)
Assertion
Ref Expression
neap0mkv  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  <->  A. x  e.  RR  ( x  =/=  0  ->  x #  0 ) )
Distinct variable group:    x, y

Proof of Theorem neap0mkv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0re 8107 . . . 4  |-  0  e.  RR
2 neeq2 2392 . . . . . 6  |-  ( y  =  0  ->  (
x  =/=  y  <->  x  =/=  0 ) )
3 breq2 4063 . . . . . 6  |-  ( y  =  0  ->  (
x #  y  <->  x #  0
) )
42, 3imbi12d 234 . . . . 5  |-  ( y  =  0  ->  (
( x  =/=  y  ->  x #  y )  <->  ( x  =/=  0  ->  x #  0 ) ) )
54rspcv 2880 . . . 4  |-  ( 0  e.  RR  ->  ( A. y  e.  RR  ( x  =/=  y  ->  x #  y )  -> 
( x  =/=  0  ->  x #  0 ) ) )
61, 5ax-mp 5 . . 3  |-  ( A. y  e.  RR  (
x  =/=  y  ->  x #  y )  ->  (
x  =/=  0  ->  x #  0 ) )
76ralimi 2571 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  A. x  e.  RR  ( x  =/=  0  ->  x #  0
) )
8 neeq1 2391 . . . . 5  |-  ( x  =  z  ->  (
x  =/=  0  <->  z  =/=  0 ) )
9 breq1 4062 . . . . 5  |-  ( x  =  z  ->  (
x #  0  <->  z #  0
) )
108, 9imbi12d 234 . . . 4  |-  ( x  =  z  ->  (
( x  =/=  0  ->  x #  0 )  <->  ( z  =/=  0  ->  z #  0 ) ) )
1110cbvralv 2742 . . 3  |-  ( A. x  e.  RR  (
x  =/=  0  ->  x #  0 )  <->  A. z  e.  RR  ( z  =/=  0  ->  z #  0
) )
12 neeq1 2391 . . . . . . 7  |-  ( z  =  ( x  -  y )  ->  (
z  =/=  0  <->  (
x  -  y )  =/=  0 ) )
13 breq1 4062 . . . . . . 7  |-  ( z  =  ( x  -  y )  ->  (
z #  0  <->  ( x  -  y ) #  0 ) )
1412, 13imbi12d 234 . . . . . 6  |-  ( z  =  ( x  -  y )  ->  (
( z  =/=  0  ->  z #  0 )  <->  ( (
x  -  y )  =/=  0  ->  (
x  -  y ) #  0 ) ) )
15 simpl 109 . . . . . 6  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A. z  e.  RR  ( z  =/=  0  ->  z #  0
) )
16 simprl 529 . . . . . . 7  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
17 simprr 531 . . . . . . 7  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  RR )
1816, 17resubcld 8488 . . . . . 6  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  -  y )  e.  RR )
1914, 15, 18rspcdva 2889 . . . . 5  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  -  y )  =/=  0  ->  (
x  -  y ) #  0 ) )
2016recnd 8136 . . . . . . 7  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  CC )
2117recnd 8136 . . . . . . 7  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  CC )
2220, 21subeq0ad 8428 . . . . . 6  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  -  y )  =  0  <->  x  =  y ) )
2322necon3bid 2419 . . . . 5  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  -  y )  =/=  0  <->  x  =/=  y ) )
24 subap0 8751 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y ) #  0  <->  x #  y
) )
2520, 21, 24syl2anc 411 . . . . 5  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  -  y ) #  0  <->  x #  y )
)
2619, 23, 253imtr3d 202 . . . 4  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  =/=  y  ->  x #  y ) )
2726ralrimivva 2590 . . 3  |-  ( A. z  e.  RR  (
z  =/=  0  -> 
z #  0 )  ->  A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y ) )
2811, 27sylbi 121 . 2  |-  ( A. x  e.  RR  (
x  =/=  0  ->  x #  0 )  ->  A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
) )
297, 28impbii 126 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  <->  A. x  e.  RR  ( x  =/=  0  ->  x #  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960    - cmin 8278   # cap 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690
This theorem is referenced by:  ltlenmkv  16211
  Copyright terms: Public domain W3C validator