Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  neap0mkv Unicode version

Theorem neap0mkv 14902
Description: The analytic Markov principle can be expressed either with two arbitrary real numbers, or one arbitrary number and zero. (Contributed by Jim Kingdon, 23-Feb-2025.)
Assertion
Ref Expression
neap0mkv  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  <->  A. x  e.  RR  ( x  =/=  0  ->  x #  0 ) )
Distinct variable group:    x, y

Proof of Theorem neap0mkv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0re 7959 . . . 4  |-  0  e.  RR
2 neeq2 2361 . . . . . 6  |-  ( y  =  0  ->  (
x  =/=  y  <->  x  =/=  0 ) )
3 breq2 4009 . . . . . 6  |-  ( y  =  0  ->  (
x #  y  <->  x #  0
) )
42, 3imbi12d 234 . . . . 5  |-  ( y  =  0  ->  (
( x  =/=  y  ->  x #  y )  <->  ( x  =/=  0  ->  x #  0 ) ) )
54rspcv 2839 . . . 4  |-  ( 0  e.  RR  ->  ( A. y  e.  RR  ( x  =/=  y  ->  x #  y )  -> 
( x  =/=  0  ->  x #  0 ) ) )
61, 5ax-mp 5 . . 3  |-  ( A. y  e.  RR  (
x  =/=  y  ->  x #  y )  ->  (
x  =/=  0  ->  x #  0 ) )
76ralimi 2540 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  A. x  e.  RR  ( x  =/=  0  ->  x #  0
) )
8 neeq1 2360 . . . . 5  |-  ( x  =  z  ->  (
x  =/=  0  <->  z  =/=  0 ) )
9 breq1 4008 . . . . 5  |-  ( x  =  z  ->  (
x #  0  <->  z #  0
) )
108, 9imbi12d 234 . . . 4  |-  ( x  =  z  ->  (
( x  =/=  0  ->  x #  0 )  <->  ( z  =/=  0  ->  z #  0 ) ) )
1110cbvralv 2705 . . 3  |-  ( A. x  e.  RR  (
x  =/=  0  ->  x #  0 )  <->  A. z  e.  RR  ( z  =/=  0  ->  z #  0
) )
12 neeq1 2360 . . . . . . 7  |-  ( z  =  ( x  -  y )  ->  (
z  =/=  0  <->  (
x  -  y )  =/=  0 ) )
13 breq1 4008 . . . . . . 7  |-  ( z  =  ( x  -  y )  ->  (
z #  0  <->  ( x  -  y ) #  0 ) )
1412, 13imbi12d 234 . . . . . 6  |-  ( z  =  ( x  -  y )  ->  (
( z  =/=  0  ->  z #  0 )  <->  ( (
x  -  y )  =/=  0  ->  (
x  -  y ) #  0 ) ) )
15 simpl 109 . . . . . 6  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A. z  e.  RR  ( z  =/=  0  ->  z #  0
) )
16 simprl 529 . . . . . . 7  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
17 simprr 531 . . . . . . 7  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  RR )
1816, 17resubcld 8340 . . . . . 6  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  -  y )  e.  RR )
1914, 15, 18rspcdva 2848 . . . . 5  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  -  y )  =/=  0  ->  (
x  -  y ) #  0 ) )
2016recnd 7988 . . . . . . 7  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  CC )
2117recnd 7988 . . . . . . 7  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  CC )
2220, 21subeq0ad 8280 . . . . . 6  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  -  y )  =  0  <->  x  =  y ) )
2322necon3bid 2388 . . . . 5  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  -  y )  =/=  0  <->  x  =/=  y ) )
24 subap0 8602 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y ) #  0  <->  x #  y
) )
2520, 21, 24syl2anc 411 . . . . 5  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  -  y ) #  0  <->  x #  y )
)
2619, 23, 253imtr3d 202 . . . 4  |-  ( ( A. z  e.  RR  ( z  =/=  0  ->  z #  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  =/=  y  ->  x #  y ) )
2726ralrimivva 2559 . . 3  |-  ( A. z  e.  RR  (
z  =/=  0  -> 
z #  0 )  ->  A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y ) )
2811, 27sylbi 121 . 2  |-  ( A. x  e.  RR  (
x  =/=  0  ->  x #  0 )  ->  A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
) )
297, 28impbii 126 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  <->  A. x  e.  RR  ( x  =/=  0  ->  x #  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   class class class wbr 4005  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813    - cmin 8130   # cap 8540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541
This theorem is referenced by:  ltlenmkv  14903
  Copyright terms: Public domain W3C validator