| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addneintr2d | Unicode version | ||
| Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 8241. Consequence of addcan2d 8239. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| addcand.1 |
|
| addcand.2 |
|
| addcand.3 |
|
| addneintr2d.4 |
|
| Ref | Expression |
|---|---|
| addneintr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addneintr2d.4 |
. 2
| |
| 2 | addcand.1 |
. . . 4
| |
| 3 | addcand.2 |
. . . 4
| |
| 4 | addcand.3 |
. . . 4
| |
| 5 | 2, 3, 4 | addcan2d 8239 |
. . 3
|
| 6 | 5 | necon3bid 2416 |
. 2
|
| 7 | 1, 6 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 7999 ax-1cn 8000 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 |
| This theorem is referenced by: modsumfzodifsn 10522 |
| Copyright terms: Public domain | W3C validator |