ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addneintr2d Unicode version

Theorem addneintr2d 8243
Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 8241. Consequence of addcan2d 8239. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1  |-  ( ph  ->  A  e.  CC )
addcand.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
addneintr2d.4  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
addneintr2d  |-  ( ph  ->  ( A  +  C
)  =/=  ( B  +  C ) )

Proof of Theorem addneintr2d
StepHypRef Expression
1 addneintr2d.4 . 2  |-  ( ph  ->  A  =/=  B )
2 addcand.1 . . . 4  |-  ( ph  ->  A  e.  CC )
3 addcand.2 . . . 4  |-  ( ph  ->  B  e.  CC )
4 addcand.3 . . . 4  |-  ( ph  ->  C  e.  CC )
52, 3, 4addcan2d 8239 . . 3  |-  ( ph  ->  ( ( A  +  C )  =  ( B  +  C )  <-> 
A  =  B ) )
65necon3bid 2416 . 2  |-  ( ph  ->  ( ( A  +  C )  =/=  ( B  +  C )  <->  A  =/=  B ) )
71, 6mpbird 167 1  |-  ( ph  ->  ( A  +  C
)  =/=  ( B  +  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175    =/= wne 2375  (class class class)co 5934   CCcc 7905    + caddc 7910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-resscn 7999  ax-1cn 8000  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5229  df-fv 5276  df-ov 5937
This theorem is referenced by:  modsumfzodifsn  10522
  Copyright terms: Public domain W3C validator