| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addneintr2d | Unicode version | ||
| Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 8279. Consequence of addcan2d 8277. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| addcand.1 |
|
| addcand.2 |
|
| addcand.3 |
|
| addneintr2d.4 |
|
| Ref | Expression |
|---|---|
| addneintr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addneintr2d.4 |
. 2
| |
| 2 | addcand.1 |
. . . 4
| |
| 3 | addcand.2 |
. . . 4
| |
| 4 | addcand.3 |
. . . 4
| |
| 5 | 2, 3, 4 | addcan2d 8277 |
. . 3
|
| 6 | 5 | necon3bid 2418 |
. 2
|
| 7 | 1, 6 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8037 ax-1cn 8038 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 |
| This theorem is referenced by: modsumfzodifsn 10563 |
| Copyright terms: Public domain | W3C validator |