ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addneintr2d Unicode version

Theorem addneintr2d 8215
Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 8213. Consequence of addcan2d 8211. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1  |-  ( ph  ->  A  e.  CC )
addcand.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
addneintr2d.4  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
addneintr2d  |-  ( ph  ->  ( A  +  C
)  =/=  ( B  +  C ) )

Proof of Theorem addneintr2d
StepHypRef Expression
1 addneintr2d.4 . 2  |-  ( ph  ->  A  =/=  B )
2 addcand.1 . . . 4  |-  ( ph  ->  A  e.  CC )
3 addcand.2 . . . 4  |-  ( ph  ->  B  e.  CC )
4 addcand.3 . . . 4  |-  ( ph  ->  C  e.  CC )
52, 3, 4addcan2d 8211 . . 3  |-  ( ph  ->  ( ( A  +  C )  =  ( B  +  C )  <-> 
A  =  B ) )
65necon3bid 2408 . 2  |-  ( ph  ->  ( ( A  +  C )  =/=  ( B  +  C )  <->  A  =/=  B ) )
71, 6mpbird 167 1  |-  ( ph  ->  ( A  +  C
)  =/=  ( B  +  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    =/= wne 2367  (class class class)co 5922   CCcc 7877    + caddc 7882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  modsumfzodifsn  10488
  Copyright terms: Public domain W3C validator