ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addneintr2d Unicode version

Theorem addneintr2d 8148
Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 8146. Consequence of addcan2d 8144. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1  |-  ( ph  ->  A  e.  CC )
addcand.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
addneintr2d.4  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
addneintr2d  |-  ( ph  ->  ( A  +  C
)  =/=  ( B  +  C ) )

Proof of Theorem addneintr2d
StepHypRef Expression
1 addneintr2d.4 . 2  |-  ( ph  ->  A  =/=  B )
2 addcand.1 . . . 4  |-  ( ph  ->  A  e.  CC )
3 addcand.2 . . . 4  |-  ( ph  ->  B  e.  CC )
4 addcand.3 . . . 4  |-  ( ph  ->  C  e.  CC )
52, 3, 4addcan2d 8144 . . 3  |-  ( ph  ->  ( ( A  +  C )  =  ( B  +  C )  <-> 
A  =  B ) )
65necon3bid 2388 . 2  |-  ( ph  ->  ( ( A  +  C )  =/=  ( B  +  C )  <->  A  =/=  B ) )
71, 6mpbird 167 1  |-  ( ph  ->  ( A  +  C
)  =/=  ( B  +  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148    =/= wne 2347  (class class class)co 5877   CCcc 7811    + caddc 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by:  modsumfzodifsn  10398
  Copyright terms: Public domain W3C validator