ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addneintr2d Unicode version

Theorem addneintr2d 8198
Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 8196. Consequence of addcan2d 8194. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1  |-  ( ph  ->  A  e.  CC )
addcand.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
addneintr2d.4  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
addneintr2d  |-  ( ph  ->  ( A  +  C
)  =/=  ( B  +  C ) )

Proof of Theorem addneintr2d
StepHypRef Expression
1 addneintr2d.4 . 2  |-  ( ph  ->  A  =/=  B )
2 addcand.1 . . . 4  |-  ( ph  ->  A  e.  CC )
3 addcand.2 . . . 4  |-  ( ph  ->  B  e.  CC )
4 addcand.3 . . . 4  |-  ( ph  ->  C  e.  CC )
52, 3, 4addcan2d 8194 . . 3  |-  ( ph  ->  ( ( A  +  C )  =  ( B  +  C )  <-> 
A  =  B ) )
65necon3bid 2405 . 2  |-  ( ph  ->  ( ( A  +  C )  =/=  ( B  +  C )  <->  A  =/=  B ) )
71, 6mpbird 167 1  |-  ( ph  ->  ( A  +  C
)  =/=  ( B  +  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164    =/= wne 2364  (class class class)co 5910   CCcc 7860    + caddc 7865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7954  ax-1cn 7955  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-distr 7966  ax-i2m1 7967  ax-0id 7970  ax-rnegex 7971  ax-cnre 7973
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5207  df-fv 5254  df-ov 5913
This theorem is referenced by:  modsumfzodifsn  10457
  Copyright terms: Public domain W3C validator