ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addneintr2d Unicode version

Theorem addneintr2d 8281
Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 8279. Consequence of addcan2d 8277. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1  |-  ( ph  ->  A  e.  CC )
addcand.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
addneintr2d.4  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
addneintr2d  |-  ( ph  ->  ( A  +  C
)  =/=  ( B  +  C ) )

Proof of Theorem addneintr2d
StepHypRef Expression
1 addneintr2d.4 . 2  |-  ( ph  ->  A  =/=  B )
2 addcand.1 . . . 4  |-  ( ph  ->  A  e.  CC )
3 addcand.2 . . . 4  |-  ( ph  ->  B  e.  CC )
4 addcand.3 . . . 4  |-  ( ph  ->  C  e.  CC )
52, 3, 4addcan2d 8277 . . 3  |-  ( ph  ->  ( ( A  +  C )  =  ( B  +  C )  <-> 
A  =  B ) )
65necon3bid 2418 . 2  |-  ( ph  ->  ( ( A  +  C )  =/=  ( B  +  C )  <->  A  =/=  B ) )
71, 6mpbird 167 1  |-  ( ph  ->  ( A  +  C
)  =/=  ( B  +  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2177    =/= wne 2377  (class class class)co 5957   CCcc 7943    + caddc 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8037  ax-1cn 8038  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960
This theorem is referenced by:  modsumfzodifsn  10563
  Copyright terms: Public domain W3C validator