Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ltlenmkv Unicode version

Theorem ltlenmkv 15724
Description: If  < can be expressed as holding exactly when  <_ holds and the values are not equal, then the analytic Markov's Principle applies. (To get the regular Markov's Principle, combine with neapmkv 15722). (Contributed by Jim Kingdon, 23-Feb-2025.)
Assertion
Ref Expression
ltlenmkv  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  ->  A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y ) )
Distinct variable group:    x, y

Proof of Theorem ltlenmkv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . . . . 9  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  z  e.  RR )
21recnd 8057 . . . . . . . 8  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  z  e.  CC )
32abscld 11348 . . . . . . 7  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  ( abs `  z )  e.  RR )
42absge0d 11351 . . . . . . . 8  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  0  <_  ( abs `  z ) )
5 simpr 110 . . . . . . . . 9  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  z  =/=  0 )
62, 5absne0d 11354 . . . . . . . 8  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  ( abs `  z )  =/=  0
)
7 breq2 4038 . . . . . . . . . 10  |-  ( y  =  ( abs `  z
)  ->  ( 0  <  y  <->  0  <  ( abs `  z ) ) )
8 breq2 4038 . . . . . . . . . . 11  |-  ( y  =  ( abs `  z
)  ->  ( 0  <_  y  <->  0  <_  ( abs `  z ) ) )
9 neeq1 2380 . . . . . . . . . . 11  |-  ( y  =  ( abs `  z
)  ->  ( y  =/=  0  <->  ( abs `  z
)  =/=  0 ) )
108, 9anbi12d 473 . . . . . . . . . 10  |-  ( y  =  ( abs `  z
)  ->  ( (
0  <_  y  /\  y  =/=  0 )  <->  ( 0  <_  ( abs `  z
)  /\  ( abs `  z )  =/=  0
) ) )
117, 10bibi12d 235 . . . . . . . . 9  |-  ( y  =  ( abs `  z
)  ->  ( (
0  <  y  <->  ( 0  <_  y  /\  y  =/=  0 ) )  <->  ( 0  <  ( abs `  z
)  <->  ( 0  <_ 
( abs `  z
)  /\  ( abs `  z )  =/=  0
) ) ) )
12 breq1 4037 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
x  <  y  <->  0  <  y ) )
13 breq1 4037 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
x  <_  y  <->  0  <_  y ) )
14 neeq2 2381 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
y  =/=  x  <->  y  =/=  0 ) )
1513, 14anbi12d 473 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
( x  <_  y  /\  y  =/=  x
)  <->  ( 0  <_ 
y  /\  y  =/=  0 ) ) )
1612, 15bibi12d 235 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
( x  <  y  <->  ( x  <_  y  /\  y  =/=  x ) )  <-> 
( 0  <  y  <->  ( 0  <_  y  /\  y  =/=  0 ) ) ) )
1716ralbidv 2497 . . . . . . . . . 10  |-  ( x  =  0  ->  ( A. y  e.  RR  ( x  <  y  <->  ( x  <_  y  /\  y  =/=  x ) )  <->  A. y  e.  RR  ( 0  < 
y  <->  ( 0  <_ 
y  /\  y  =/=  0 ) ) ) )
18 simpll 527 . . . . . . . . . 10  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) ) )
19 0red 8029 . . . . . . . . . 10  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  0  e.  RR )
2017, 18, 19rspcdva 2873 . . . . . . . . 9  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  A. y  e.  RR  ( 0  < 
y  <->  ( 0  <_ 
y  /\  y  =/=  0 ) ) )
2111, 20, 3rspcdva 2873 . . . . . . . 8  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  ( 0  <  ( abs `  z
)  <->  ( 0  <_ 
( abs `  z
)  /\  ( abs `  z )  =/=  0
) ) )
224, 6, 21mpbir2and 946 . . . . . . 7  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  0  <  ( abs `  z ) )
233, 22gt0ap0d 8658 . . . . . 6  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  ( abs `  z ) #  0 )
24 abs00ap 11229 . . . . . . 7  |-  ( z  e.  CC  ->  (
( abs `  z
) #  0  <->  z #  0
) )
252, 24syl 14 . . . . . 6  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  ( ( abs `  z ) #  0  <-> 
z #  0 ) )
2623, 25mpbid 147 . . . . 5  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  /\  z  e.  RR )  /\  z  =/=  0
)  ->  z #  0
)
2726ex 115 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  <->  ( x  <_  y  /\  y  =/=  x ) )  /\  z  e.  RR )  ->  ( z  =/=  0  ->  z #  0 ) )
2827ralrimiva 2570 . . 3  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  ->  A. z  e.  RR  ( z  =/=  0  ->  z #  0 ) )
29 neeq1 2380 . . . . 5  |-  ( z  =  x  ->  (
z  =/=  0  <->  x  =/=  0 ) )
30 breq1 4037 . . . . 5  |-  ( z  =  x  ->  (
z #  0  <->  x #  0
) )
3129, 30imbi12d 234 . . . 4  |-  ( z  =  x  ->  (
( z  =/=  0  ->  z #  0 )  <->  ( x  =/=  0  ->  x #  0 ) ) )
3231cbvralv 2729 . . 3  |-  ( A. z  e.  RR  (
z  =/=  0  -> 
z #  0 )  <->  A. x  e.  RR  ( x  =/=  0  ->  x #  0
) )
3328, 32sylib 122 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  ->  A. x  e.  RR  ( x  =/=  0  ->  x #  0 ) )
34 neap0mkv 15723 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  <->  A. x  e.  RR  ( x  =/=  0  ->  x #  0 ) )
3533, 34sylibr 134 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  <->  ( x  <_ 
y  /\  y  =/=  x ) )  ->  A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   class class class wbr 4034   ` cfv 5259   CCcc 7879   RRcr 7880   0cc0 7881    < clt 8063    <_ cle 8064   # cap 8610   abscabs 11164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-rp 9731  df-seqfrec 10542  df-exp 10633  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator