ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oneel Unicode version

Theorem 2oneel 7316
Description:  (/) and  1o are two unequal elements of  2o. (Contributed by Jim Kingdon, 8-Feb-2025.)
Assertion
Ref Expression
2oneel  |-  <. (/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }
Distinct variable group:    v, u

Proof of Theorem 2oneel
StepHypRef Expression
1 1n0 6485 . . 3  |-  1o  =/=  (/)
21necomi 2449 . 2  |-  (/)  =/=  1o
3 0lt2o 6494 . . 3  |-  (/)  e.  2o
4 1lt2o 6495 . . 3  |-  1o  e.  2o
5 neeq1 2377 . . . 4  |-  ( u  =  (/)  ->  ( u  =/=  v  <->  (/)  =/=  v
) )
6 neeq2 2378 . . . 4  |-  ( v  =  1o  ->  ( (/) 
=/=  v  <->  (/)  =/=  1o ) )
75, 6opelopab2 4301 . . 3  |-  ( (
(/)  e.  2o  /\  1o  e.  2o )  ->  ( <.
(/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) }  <->  (/)  =/=  1o ) )
83, 4, 7mp2an 426 . 2  |-  ( <. (/)
,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) }  <->  (/)  =/=  1o )
92, 8mpbir 146 1  |-  <. (/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2164    =/= wne 2364   (/)c0 3446   <.cop 3621   {copab 4089   1oc1o 6462   2oc2o 6463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-opab 4091  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-1o 6469  df-2o 6470
This theorem is referenced by:  2omotaplemst  7318
  Copyright terms: Public domain W3C validator