ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oneel Unicode version

Theorem 2oneel 7403
Description:  (/) and  1o are two unequal elements of  2o. (Contributed by Jim Kingdon, 8-Feb-2025.)
Assertion
Ref Expression
2oneel  |-  <. (/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }
Distinct variable group:    v, u

Proof of Theorem 2oneel
StepHypRef Expression
1 1n0 6541 . . 3  |-  1o  =/=  (/)
21necomi 2463 . 2  |-  (/)  =/=  1o
3 0lt2o 6550 . . 3  |-  (/)  e.  2o
4 1lt2o 6551 . . 3  |-  1o  e.  2o
5 neeq1 2391 . . . 4  |-  ( u  =  (/)  ->  ( u  =/=  v  <->  (/)  =/=  v
) )
6 neeq2 2392 . . . 4  |-  ( v  =  1o  ->  ( (/) 
=/=  v  <->  (/)  =/=  1o ) )
75, 6opelopab2 4335 . . 3  |-  ( (
(/)  e.  2o  /\  1o  e.  2o )  ->  ( <.
(/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) }  <->  (/)  =/=  1o ) )
83, 4, 7mp2an 426 . 2  |-  ( <. (/)
,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) }  <->  (/)  =/=  1o )
92, 8mpbir 146 1  |-  <. (/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2178    =/= wne 2378   (/)c0 3468   <.cop 3646   {copab 4120   1oc1o 6518   2oc2o 6519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-opab 4122  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436  df-1o 6525  df-2o 6526
This theorem is referenced by:  2omotaplemst  7405
  Copyright terms: Public domain W3C validator