ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oneel Unicode version

Theorem 2oneel 7257
Description:  (/) and  1o are two unequal elements of  2o. (Contributed by Jim Kingdon, 8-Feb-2025.)
Assertion
Ref Expression
2oneel  |-  <. (/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }
Distinct variable group:    v, u

Proof of Theorem 2oneel
StepHypRef Expression
1 1n0 6435 . . 3  |-  1o  =/=  (/)
21necomi 2432 . 2  |-  (/)  =/=  1o
3 0lt2o 6444 . . 3  |-  (/)  e.  2o
4 1lt2o 6445 . . 3  |-  1o  e.  2o
5 neeq1 2360 . . . 4  |-  ( u  =  (/)  ->  ( u  =/=  v  <->  (/)  =/=  v
) )
6 neeq2 2361 . . . 4  |-  ( v  =  1o  ->  ( (/) 
=/=  v  <->  (/)  =/=  1o ) )
75, 6opelopab2 4272 . . 3  |-  ( (
(/)  e.  2o  /\  1o  e.  2o )  ->  ( <.
(/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) }  <->  (/)  =/=  1o ) )
83, 4, 7mp2an 426 . 2  |-  ( <. (/)
,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) }  <->  (/)  =/=  1o )
92, 8mpbir 146 1  |-  <. (/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2148    =/= wne 2347   (/)c0 3424   <.cop 3597   {copab 4065   1oc1o 6412   2oc2o 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-opab 4067  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373  df-1o 6419  df-2o 6420
This theorem is referenced by:  2omotaplemst  7259
  Copyright terms: Public domain W3C validator