ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oneel Unicode version

Theorem 2oneel 7442
Description:  (/) and  1o are two unequal elements of  2o. (Contributed by Jim Kingdon, 8-Feb-2025.)
Assertion
Ref Expression
2oneel  |-  <. (/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }
Distinct variable group:    v, u

Proof of Theorem 2oneel
StepHypRef Expression
1 1n0 6578 . . 3  |-  1o  =/=  (/)
21necomi 2485 . 2  |-  (/)  =/=  1o
3 0lt2o 6587 . . 3  |-  (/)  e.  2o
4 1lt2o 6588 . . 3  |-  1o  e.  2o
5 neeq1 2413 . . . 4  |-  ( u  =  (/)  ->  ( u  =/=  v  <->  (/)  =/=  v
) )
6 neeq2 2414 . . . 4  |-  ( v  =  1o  ->  ( (/) 
=/=  v  <->  (/)  =/=  1o ) )
75, 6opelopab2 4359 . . 3  |-  ( (
(/)  e.  2o  /\  1o  e.  2o )  ->  ( <.
(/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) }  <->  (/)  =/=  1o ) )
83, 4, 7mp2an 426 . 2  |-  ( <. (/)
,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) }  <->  (/)  =/=  1o )
92, 8mpbir 146 1  |-  <. (/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200    =/= wne 2400   (/)c0 3491   <.cop 3669   {copab 4144   1oc1o 6555   2oc2o 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-opab 4146  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-1o 6562  df-2o 6563
This theorem is referenced by:  2omotaplemst  7444
  Copyright terms: Public domain W3C validator