Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  neapmkv Unicode version

Theorem neapmkv 13600
Description: If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.)
Assertion
Ref Expression
neapmkv  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  om  e. Markov )
Distinct variable group:    x, y

Proof of Theorem neapmkv
Dummy variables  f  i  j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6608 . . . . . 6  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  f : NN --> { 0 ,  1 } )
21adantl 275 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  f : NN --> { 0 ,  1 } )
3 oveq2 5826 . . . . . . . 8  |-  ( i  =  j  ->  (
2 ^ i )  =  ( 2 ^ j ) )
43oveq2d 5834 . . . . . . 7  |-  ( i  =  j  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ j
) ) )
5 fveq2 5465 . . . . . . 7  |-  ( i  =  j  ->  (
f `  i )  =  ( f `  j ) )
64, 5oveq12d 5836 . . . . . 6  |-  ( i  =  j  ->  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  ( ( 1  /  ( 2 ^ j ) )  x.  ( f `  j
) ) )
76cbvsumv 11240 . . . . 5  |-  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =  sum_ j  e.  NN  (
( 1  /  (
2 ^ j ) )  x.  ( f `
 j ) )
82, 7trilpolemcl 13570 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  e.  RR )
9 1red 7876 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  1  e.  RR )
10 simpl 108 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
) )
11 neeq1 2340 . . . . . . . . 9  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x  =/=  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =/=  y ) )
12 breq1 3968 . . . . . . . . 9  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x #  y 
<-> 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) #  y ) )
1311, 12imbi12d 233 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( (
x  =/=  y  ->  x #  y )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  y  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  y ) ) )
14 neeq2 2341 . . . . . . . . 9  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  y  <->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =/=  1
) )
15 breq2 3969 . . . . . . . . 9  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) #  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) #  1 ) )
1614, 15imbi12d 233 . . . . . . . 8  |-  ( y  =  1  ->  (
( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =/=  y  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) #  y )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  1  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  1 ) ) )
1713, 16rspc2va 2830 . . . . . . 7  |-  ( ( ( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  e.  RR  /\  1  e.  RR )  /\  A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y ) )  -> 
( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =/=  1  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) #  1 ) )
188, 9, 10, 17syl21anc 1219 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  1  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  1 ) )
1918imp 123 . . . . 5  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  /\  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =/=  1
)  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  1 )
202, 7, 19neapmkvlem 13599 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  ( -.  A. z  e.  NN  ( f `  z
)  =  1  ->  E. z  e.  NN  ( f `  z
)  =  0 ) )
2120ralrimiva 2530 . . 3  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( -.  A. z  e.  NN  (
f `  z )  =  1  ->  E. z  e.  NN  ( f `  z )  =  0 ) )
22 nnex 8822 . . . 4  |-  NN  e.  _V
23 ismkvnn 13586 . . . 4  |-  ( NN  e.  _V  ->  ( NN  e. Markov 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( -.  A. z  e.  NN  ( f `  z )  =  1  ->  E. z  e.  NN  ( f `  z
)  =  0 ) ) )
2422, 23ax-mp 5 . . 3  |-  ( NN  e. Markov 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( -.  A. z  e.  NN  ( f `  z )  =  1  ->  E. z  e.  NN  ( f `  z
)  =  0 ) )
2521, 24sylibr 133 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  NN  e. Markov )
26 nnenom 10315 . . 3  |-  NN  ~~  om
27 enmkv 7088 . . 3  |-  ( NN 
~~  om  ->  ( NN  e. Markov 
<->  om  e. Markov ) )
2826, 27ax-mp 5 . 2  |-  ( NN  e. Markov 
<->  om  e. Markov )
2925, 28sylib 121 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  om  e. Markov )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128    =/= wne 2327   A.wral 2435   E.wrex 2436   _Vcvv 2712   {cpr 3561   class class class wbr 3965   omcom 4547   -->wf 5163   ` cfv 5167  (class class class)co 5818    ^m cmap 6586    ~~ cen 6676  Markovcmarkov 7077   RRcr 7714   0cc0 7715   1c1 7716    x. cmul 7720   # cap 8439    / cdiv 8528   NNcn 8816   2c2 8867   ^cexp 10400   sum_csu 11232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-frec 6332  df-1o 6357  df-2o 6358  df-oadd 6361  df-er 6473  df-map 6588  df-en 6679  df-dom 6680  df-fin 6681  df-omni 7061  df-markov 7078  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-ico 9780  df-fz 9895  df-fzo 10024  df-seqfrec 10327  df-exp 10401  df-ihash 10632  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-clim 11158  df-sumdc 11233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator