Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  neapmkv Unicode version

Theorem neapmkv 16209
Description: If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.)
Assertion
Ref Expression
neapmkv  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  om  e. Markov )
Distinct variable group:    x, y

Proof of Theorem neapmkv
Dummy variables  f  i  j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6780 . . . . . 6  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  f : NN --> { 0 ,  1 } )
21adantl 277 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  f : NN --> { 0 ,  1 } )
3 oveq2 5975 . . . . . . . 8  |-  ( i  =  j  ->  (
2 ^ i )  =  ( 2 ^ j ) )
43oveq2d 5983 . . . . . . 7  |-  ( i  =  j  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ j
) ) )
5 fveq2 5599 . . . . . . 7  |-  ( i  =  j  ->  (
f `  i )  =  ( f `  j ) )
64, 5oveq12d 5985 . . . . . 6  |-  ( i  =  j  ->  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  ( ( 1  /  ( 2 ^ j ) )  x.  ( f `  j
) ) )
76cbvsumv 11787 . . . . 5  |-  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =  sum_ j  e.  NN  (
( 1  /  (
2 ^ j ) )  x.  ( f `
 j ) )
82, 7trilpolemcl 16178 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  e.  RR )
9 1red 8122 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  1  e.  RR )
10 simpl 109 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
) )
11 neeq1 2391 . . . . . . . . 9  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x  =/=  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =/=  y ) )
12 breq1 4062 . . . . . . . . 9  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x #  y 
<-> 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) #  y ) )
1311, 12imbi12d 234 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( (
x  =/=  y  ->  x #  y )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  y  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  y ) ) )
14 neeq2 2392 . . . . . . . . 9  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  y  <->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =/=  1
) )
15 breq2 4063 . . . . . . . . 9  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) #  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) #  1 ) )
1614, 15imbi12d 234 . . . . . . . 8  |-  ( y  =  1  ->  (
( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =/=  y  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) #  y )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  1  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  1 ) ) )
1713, 16rspc2va 2898 . . . . . . 7  |-  ( ( ( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  e.  RR  /\  1  e.  RR )  /\  A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y ) )  -> 
( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =/=  1  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) #  1 ) )
188, 9, 10, 17syl21anc 1249 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  1  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  1 ) )
1918imp 124 . . . . 5  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  /\  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =/=  1
)  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  1 )
202, 7, 19neapmkvlem 16208 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  ( -.  A. z  e.  NN  ( f `  z
)  =  1  ->  E. z  e.  NN  ( f `  z
)  =  0 ) )
2120ralrimiva 2581 . . 3  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( -.  A. z  e.  NN  (
f `  z )  =  1  ->  E. z  e.  NN  ( f `  z )  =  0 ) )
22 nnex 9077 . . . 4  |-  NN  e.  _V
23 ismkvnn 16194 . . . 4  |-  ( NN  e.  _V  ->  ( NN  e. Markov 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( -.  A. z  e.  NN  ( f `  z )  =  1  ->  E. z  e.  NN  ( f `  z
)  =  0 ) ) )
2422, 23ax-mp 5 . . 3  |-  ( NN  e. Markov 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( -.  A. z  e.  NN  ( f `  z )  =  1  ->  E. z  e.  NN  ( f `  z
)  =  0 ) )
2521, 24sylibr 134 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  NN  e. Markov )
26 nnenom 10616 . . 3  |-  NN  ~~  om
27 enmkv 7290 . . 3  |-  ( NN 
~~  om  ->  ( NN  e. Markov 
<->  om  e. Markov ) )
2826, 27ax-mp 5 . 2  |-  ( NN  e. Markov 
<->  om  e. Markov )
2925, 28sylib 122 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  om  e. Markov )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   E.wrex 2487   _Vcvv 2776   {cpr 3644   class class class wbr 4059   omcom 4656   -->wf 5286   ` cfv 5290  (class class class)co 5967    ^m cmap 6758    ~~ cen 6848  Markovcmarkov 7279   RRcr 7959   0cc0 7960   1c1 7961    x. cmul 7965   # cap 8689    / cdiv 8780   NNcn 9071   2c2 9122   ^cexp 10720   sum_csu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-2o 6526  df-oadd 6529  df-er 6643  df-map 6760  df-en 6851  df-dom 6852  df-fin 6853  df-omni 7263  df-markov 7280  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator