Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  neapmkv Unicode version

Theorem neapmkv 14675
Description: If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.)
Assertion
Ref Expression
neapmkv  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  om  e. Markov )
Distinct variable group:    x, y

Proof of Theorem neapmkv
Dummy variables  f  i  j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6667 . . . . . 6  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  f : NN --> { 0 ,  1 } )
21adantl 277 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  f : NN --> { 0 ,  1 } )
3 oveq2 5880 . . . . . . . 8  |-  ( i  =  j  ->  (
2 ^ i )  =  ( 2 ^ j ) )
43oveq2d 5888 . . . . . . 7  |-  ( i  =  j  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ j
) ) )
5 fveq2 5514 . . . . . . 7  |-  ( i  =  j  ->  (
f `  i )  =  ( f `  j ) )
64, 5oveq12d 5890 . . . . . 6  |-  ( i  =  j  ->  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  ( ( 1  /  ( 2 ^ j ) )  x.  ( f `  j
) ) )
76cbvsumv 11362 . . . . 5  |-  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =  sum_ j  e.  NN  (
( 1  /  (
2 ^ j ) )  x.  ( f `
 j ) )
82, 7trilpolemcl 14645 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  e.  RR )
9 1red 7969 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  1  e.  RR )
10 simpl 109 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
) )
11 neeq1 2360 . . . . . . . . 9  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x  =/=  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =/=  y ) )
12 breq1 4005 . . . . . . . . 9  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x #  y 
<-> 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) #  y ) )
1311, 12imbi12d 234 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( (
x  =/=  y  ->  x #  y )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  y  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  y ) ) )
14 neeq2 2361 . . . . . . . . 9  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  y  <->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =/=  1
) )
15 breq2 4006 . . . . . . . . 9  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) #  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) #  1 ) )
1614, 15imbi12d 234 . . . . . . . 8  |-  ( y  =  1  ->  (
( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =/=  y  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) #  y )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  1  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  1 ) ) )
1713, 16rspc2va 2855 . . . . . . 7  |-  ( ( ( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  e.  RR  /\  1  e.  RR )  /\  A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y ) )  -> 
( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =/=  1  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) #  1 ) )
188, 9, 10, 17syl21anc 1237 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  1  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  1 ) )
1918imp 124 . . . . 5  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  /\  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =/=  1
)  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  1 )
202, 7, 19neapmkvlem 14674 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  ( -.  A. z  e.  NN  ( f `  z
)  =  1  ->  E. z  e.  NN  ( f `  z
)  =  0 ) )
2120ralrimiva 2550 . . 3  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( -.  A. z  e.  NN  (
f `  z )  =  1  ->  E. z  e.  NN  ( f `  z )  =  0 ) )
22 nnex 8921 . . . 4  |-  NN  e.  _V
23 ismkvnn 14661 . . . 4  |-  ( NN  e.  _V  ->  ( NN  e. Markov 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( -.  A. z  e.  NN  ( f `  z )  =  1  ->  E. z  e.  NN  ( f `  z
)  =  0 ) ) )
2422, 23ax-mp 5 . . 3  |-  ( NN  e. Markov 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( -.  A. z  e.  NN  ( f `  z )  =  1  ->  E. z  e.  NN  ( f `  z
)  =  0 ) )
2521, 24sylibr 134 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  NN  e. Markov )
26 nnenom 10429 . . 3  |-  NN  ~~  om
27 enmkv 7157 . . 3  |-  ( NN 
~~  om  ->  ( NN  e. Markov 
<->  om  e. Markov ) )
2826, 27ax-mp 5 . 2  |-  ( NN  e. Markov 
<->  om  e. Markov )
2925, 28sylib 122 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  om  e. Markov )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456   _Vcvv 2737   {cpr 3593   class class class wbr 4002   omcom 4588   -->wf 5211   ` cfv 5215  (class class class)co 5872    ^m cmap 6645    ~~ cen 6735  Markovcmarkov 7146   RRcr 7807   0cc0 7808   1c1 7809    x. cmul 7813   # cap 8534    / cdiv 8625   NNcn 8915   2c2 8966   ^cexp 10514   sum_csu 11354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-mulrcl 7907  ax-addcom 7908  ax-mulcom 7909  ax-addass 7910  ax-mulass 7911  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-1rid 7915  ax-0id 7916  ax-rnegex 7917  ax-precex 7918  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-apti 7923  ax-pre-ltadd 7924  ax-pre-mulgt0 7925  ax-pre-mulext 7926  ax-arch 7927  ax-caucvg 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-po 4295  df-iso 4296  df-iord 4365  df-on 4367  df-ilim 4368  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-isom 5224  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-recs 6303  df-irdg 6368  df-frec 6389  df-1o 6414  df-2o 6415  df-oadd 6418  df-er 6532  df-map 6647  df-en 6738  df-dom 6739  df-fin 6740  df-omni 7130  df-markov 7147  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-reap 8528  df-ap 8535  df-div 8626  df-inn 8916  df-2 8974  df-3 8975  df-4 8976  df-n0 9173  df-z 9250  df-uz 9525  df-q 9616  df-rp 9650  df-ico 9890  df-fz 10005  df-fzo 10138  df-seqfrec 10441  df-exp 10515  df-ihash 10749  df-cj 10844  df-re 10845  df-im 10846  df-rsqrt 11000  df-abs 11001  df-clim 11280  df-sumdc 11355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator