Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  neapmkv Unicode version

Theorem neapmkv 13579
Description: If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.)
Assertion
Ref Expression
neapmkv  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  om  e. Markov )
Distinct variable group:    x, y

Proof of Theorem neapmkv
Dummy variables  f  i  j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6604 . . . . . 6  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  f : NN --> { 0 ,  1 } )
21adantl 275 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  f : NN --> { 0 ,  1 } )
3 oveq2 5822 . . . . . . . 8  |-  ( i  =  j  ->  (
2 ^ i )  =  ( 2 ^ j ) )
43oveq2d 5830 . . . . . . 7  |-  ( i  =  j  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ j
) ) )
5 fveq2 5461 . . . . . . 7  |-  ( i  =  j  ->  (
f `  i )  =  ( f `  j ) )
64, 5oveq12d 5832 . . . . . 6  |-  ( i  =  j  ->  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  ( ( 1  /  ( 2 ^ j ) )  x.  ( f `  j
) ) )
76cbvsumv 11235 . . . . 5  |-  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =  sum_ j  e.  NN  (
( 1  /  (
2 ^ j ) )  x.  ( f `
 j ) )
82, 7trilpolemcl 13549 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  e.  RR )
9 1red 7872 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  1  e.  RR )
10 simpl 108 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
) )
11 neeq1 2337 . . . . . . . . 9  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x  =/=  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =/=  y ) )
12 breq1 3964 . . . . . . . . 9  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x #  y 
<-> 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) #  y ) )
1311, 12imbi12d 233 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( (
x  =/=  y  ->  x #  y )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  y  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  y ) ) )
14 neeq2 2338 . . . . . . . . 9  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  y  <->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =/=  1
) )
15 breq2 3965 . . . . . . . . 9  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) #  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) #  1 ) )
1614, 15imbi12d 233 . . . . . . . 8  |-  ( y  =  1  ->  (
( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =/=  y  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) #  y )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  1  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  1 ) ) )
1713, 16rspc2va 2827 . . . . . . 7  |-  ( ( ( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  e.  RR  /\  1  e.  RR )  /\  A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y ) )  -> 
( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =/=  1  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) #  1 ) )
188, 9, 10, 17syl21anc 1216 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =/=  1  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  1 ) )
1918imp 123 . . . . 5  |-  ( ( ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  /\  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =/=  1
)  ->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) #  1 )
202, 7, 19neapmkvlem 13578 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  =/=  y  ->  x #  y )  /\  f  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  ( -.  A. z  e.  NN  ( f `  z
)  =  1  ->  E. z  e.  NN  ( f `  z
)  =  0 ) )
2120ralrimiva 2527 . . 3  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( -.  A. z  e.  NN  (
f `  z )  =  1  ->  E. z  e.  NN  ( f `  z )  =  0 ) )
22 nnex 8818 . . . 4  |-  NN  e.  _V
23 ismkvnn 13565 . . . 4  |-  ( NN  e.  _V  ->  ( NN  e. Markov 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( -.  A. z  e.  NN  ( f `  z )  =  1  ->  E. z  e.  NN  ( f `  z
)  =  0 ) ) )
2422, 23ax-mp 5 . . 3  |-  ( NN  e. Markov 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( -.  A. z  e.  NN  ( f `  z )  =  1  ->  E. z  e.  NN  ( f `  z
)  =  0 ) )
2521, 24sylibr 133 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  NN  e. Markov )
26 nnenom 10311 . . 3  |-  NN  ~~  om
27 enmkv 7084 . . 3  |-  ( NN 
~~  om  ->  ( NN  e. Markov 
<->  om  e. Markov ) )
2826, 27ax-mp 5 . 2  |-  ( NN  e. Markov 
<->  om  e. Markov )
2925, 28sylib 121 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y
)  ->  om  e. Markov )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 2125    =/= wne 2324   A.wral 2432   E.wrex 2433   _Vcvv 2709   {cpr 3557   class class class wbr 3961   omcom 4543   -->wf 5159   ` cfv 5163  (class class class)co 5814    ^m cmap 6582    ~~ cen 6672  Markovcmarkov 7073   RRcr 7710   0cc0 7711   1c1 7712    x. cmul 7716   # cap 8435    / cdiv 8524   NNcn 8812   2c2 8863   ^cexp 10396   sum_csu 11227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-2o 6354  df-oadd 6357  df-er 6469  df-map 6584  df-en 6675  df-dom 6676  df-fin 6677  df-omni 7057  df-markov 7074  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-ico 9776  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-ihash 10627  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator