ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfixp1 Unicode version

Theorem nfixp1 6828
Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfixp1  |-  F/_ x X_ x  e.  A  B

Proof of Theorem nfixp1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-ixp 6809 . 2  |-  X_ x  e.  A  B  =  { y  |  ( y  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( y `  x )  e.  B
) }
2 nfcv 2350 . . . . 5  |-  F/_ x
y
3 nfab1 2352 . . . . 5  |-  F/_ x { x  |  x  e.  A }
42, 3nffn 5389 . . . 4  |-  F/ x  y  Fn  { x  |  x  e.  A }
5 nfra1 2539 . . . 4  |-  F/ x A. x  e.  A  ( y `  x
)  e.  B
64, 5nfan 1589 . . 3  |-  F/ x
( y  Fn  {
x  |  x  e.  A }  /\  A. x  e.  A  (
y `  x )  e.  B )
76nfab 2355 . 2  |-  F/_ x { y  |  ( y  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( y `  x )  e.  B
) }
81, 7nfcxfr 2347 1  |-  F/_ x X_ x  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2178   {cab 2193   F/_wnfc 2337   A.wral 2486    Fn wfn 5285   ` cfv 5290   X_cixp 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-fun 5292  df-fn 5293  df-ixp 6809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator