ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfixp1 Unicode version

Theorem nfixp1 6718
Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfixp1  |-  F/_ x X_ x  e.  A  B

Proof of Theorem nfixp1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-ixp 6699 . 2  |-  X_ x  e.  A  B  =  { y  |  ( y  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( y `  x )  e.  B
) }
2 nfcv 2319 . . . . 5  |-  F/_ x
y
3 nfab1 2321 . . . . 5  |-  F/_ x { x  |  x  e.  A }
42, 3nffn 5313 . . . 4  |-  F/ x  y  Fn  { x  |  x  e.  A }
5 nfra1 2508 . . . 4  |-  F/ x A. x  e.  A  ( y `  x
)  e.  B
64, 5nfan 1565 . . 3  |-  F/ x
( y  Fn  {
x  |  x  e.  A }  /\  A. x  e.  A  (
y `  x )  e.  B )
76nfab 2324 . 2  |-  F/_ x { y  |  ( y  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( y `  x )  e.  B
) }
81, 7nfcxfr 2316 1  |-  F/_ x X_ x  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2148   {cab 2163   F/_wnfc 2306   A.wral 2455    Fn wfn 5212   ` cfv 5217   X_cixp 6698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-fun 5219  df-fn 5220  df-ixp 6699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator