ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfofr Unicode version

Theorem nfofr 6137
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
nfof.1  |-  F/_ x R
Assertion
Ref Expression
nfofr  |-  F/_ x  oR R

Proof of Theorem nfofr
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofr 6131 . 2  |-  oR R  =  { <. u ,  v >.  |  A. w  e.  ( dom  u  i^i  dom  v )
( u `  w
) R ( v `
 w ) }
2 nfcv 2336 . . . 4  |-  F/_ x
( dom  u  i^i  dom  v )
3 nfcv 2336 . . . . 5  |-  F/_ x
( u `  w
)
4 nfof.1 . . . . 5  |-  F/_ x R
5 nfcv 2336 . . . . 5  |-  F/_ x
( v `  w
)
63, 4, 5nfbr 4075 . . . 4  |-  F/ x
( u `  w
) R ( v `
 w )
72, 6nfralxy 2532 . . 3  |-  F/ x A. w  e.  ( dom  u  i^i  dom  v
) ( u `  w ) R ( v `  w )
87nfopab 4097 . 2  |-  F/_ x { <. u ,  v
>.  |  A. w  e.  ( dom  u  i^i 
dom  v ) ( u `  w ) R ( v `  w ) }
91, 8nfcxfr 2333 1  |-  F/_ x  oR R
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2323   A.wral 2472    i^i cin 3152   class class class wbr 4029   {copab 4089   dom cdm 4659   ` cfv 5254    oRcofr 6129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-ofr 6131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator