ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfofr Unicode version

Theorem nfofr 6067
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
nfof.1  |-  F/_ x R
Assertion
Ref Expression
nfofr  |-  F/_ x  oR R

Proof of Theorem nfofr
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofr 6062 . 2  |-  oR R  =  { <. u ,  v >.  |  A. w  e.  ( dom  u  i^i  dom  v )
( u `  w
) R ( v `
 w ) }
2 nfcv 2312 . . . 4  |-  F/_ x
( dom  u  i^i  dom  v )
3 nfcv 2312 . . . . 5  |-  F/_ x
( u `  w
)
4 nfof.1 . . . . 5  |-  F/_ x R
5 nfcv 2312 . . . . 5  |-  F/_ x
( v `  w
)
63, 4, 5nfbr 4035 . . . 4  |-  F/ x
( u `  w
) R ( v `
 w )
72, 6nfralxy 2508 . . 3  |-  F/ x A. w  e.  ( dom  u  i^i  dom  v
) ( u `  w ) R ( v `  w )
87nfopab 4057 . 2  |-  F/_ x { <. u ,  v
>.  |  A. w  e.  ( dom  u  i^i 
dom  v ) ( u `  w ) R ( v `  w ) }
91, 8nfcxfr 2309 1  |-  F/_ x  oR R
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2299   A.wral 2448    i^i cin 3120   class class class wbr 3989   {copab 4049   dom cdm 4611   ` cfv 5198    oRcofr 6060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-ofr 6062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator