ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfofr Unicode version

Theorem nfofr 6091
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
nfof.1  |-  F/_ x R
Assertion
Ref Expression
nfofr  |-  F/_ x  oR R

Proof of Theorem nfofr
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofr 6086 . 2  |-  oR R  =  { <. u ,  v >.  |  A. w  e.  ( dom  u  i^i  dom  v )
( u `  w
) R ( v `
 w ) }
2 nfcv 2319 . . . 4  |-  F/_ x
( dom  u  i^i  dom  v )
3 nfcv 2319 . . . . 5  |-  F/_ x
( u `  w
)
4 nfof.1 . . . . 5  |-  F/_ x R
5 nfcv 2319 . . . . 5  |-  F/_ x
( v `  w
)
63, 4, 5nfbr 4051 . . . 4  |-  F/ x
( u `  w
) R ( v `
 w )
72, 6nfralxy 2515 . . 3  |-  F/ x A. w  e.  ( dom  u  i^i  dom  v
) ( u `  w ) R ( v `  w )
87nfopab 4073 . 2  |-  F/_ x { <. u ,  v
>.  |  A. w  e.  ( dom  u  i^i 
dom  v ) ( u `  w ) R ( v `  w ) }
91, 8nfcxfr 2316 1  |-  F/_ x  oR R
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2306   A.wral 2455    i^i cin 3130   class class class wbr 4005   {copab 4065   dom cdm 4628   ` cfv 5218    oRcofr 6084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-ofr 6086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator