ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopab Unicode version

Theorem nfopab 4128
Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.)
Hypothesis
Ref Expression
nfopab.1  |-  F/ z
ph
Assertion
Ref Expression
nfopab  |-  F/_ z { <. x ,  y
>.  |  ph }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem nfopab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-opab 4122 . 2  |-  { <. x ,  y >.  |  ph }  =  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
2 nfv 1552 . . . . . 6  |-  F/ z  w  =  <. x ,  y >.
3 nfopab.1 . . . . . 6  |-  F/ z
ph
42, 3nfan 1589 . . . . 5  |-  F/ z ( w  =  <. x ,  y >.  /\  ph )
54nfex 1661 . . . 4  |-  F/ z E. y ( w  =  <. x ,  y
>.  /\  ph )
65nfex 1661 . . 3  |-  F/ z E. x E. y
( w  =  <. x ,  y >.  /\  ph )
76nfab 2355 . 2  |-  F/_ z { w  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
81, 7nfcxfr 2347 1  |-  F/_ z { <. x ,  y
>.  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   F/wnf 1484   E.wex 1516   {cab 2193   F/_wnfc 2337   <.cop 3646   {copab 4120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-opab 4122
This theorem is referenced by:  csbopabg  4138  nfmpt  4152  nfxp  4720  nfco  4861  nfcnv  4875  nfofr  6188
  Copyright terms: Public domain W3C validator