ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfofr GIF version

Theorem nfofr 6188
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
nfof.1 𝑥𝑅
Assertion
Ref Expression
nfofr 𝑥𝑟 𝑅

Proof of Theorem nfofr
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofr 6182 . 2 𝑟 𝑅 = {⟨𝑢, 𝑣⟩ ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢𝑤)𝑅(𝑣𝑤)}
2 nfcv 2350 . . . 4 𝑥(dom 𝑢 ∩ dom 𝑣)
3 nfcv 2350 . . . . 5 𝑥(𝑢𝑤)
4 nfof.1 . . . . 5 𝑥𝑅
5 nfcv 2350 . . . . 5 𝑥(𝑣𝑤)
63, 4, 5nfbr 4106 . . . 4 𝑥(𝑢𝑤)𝑅(𝑣𝑤)
72, 6nfralxy 2546 . . 3 𝑥𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢𝑤)𝑅(𝑣𝑤)
87nfopab 4128 . 2 𝑥{⟨𝑢, 𝑣⟩ ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢𝑤)𝑅(𝑣𝑤)}
91, 8nfcxfr 2347 1 𝑥𝑟 𝑅
Colors of variables: wff set class
Syntax hints:  wnfc 2337  wral 2486  cin 3173   class class class wbr 4059  {copab 4120  dom cdm 4693  cfv 5290  𝑟 cofr 6180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-ofr 6182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator