| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfofr | GIF version | ||
| Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| nfof.1 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfofr | ⊢ Ⅎ𝑥 ∘𝑟 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ofr 6136 | . 2 ⊢ ∘𝑟 𝑅 = {〈𝑢, 𝑣〉 ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} | |
| 2 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
| 3 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
| 4 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 5 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
| 6 | 3, 4, 5 | nfbr 4079 | . . . 4 ⊢ Ⅎ𝑥(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
| 7 | 2, 6 | nfralxy 2535 | . . 3 ⊢ Ⅎ𝑥∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
| 8 | 7 | nfopab 4101 | . 2 ⊢ Ⅎ𝑥{〈𝑢, 𝑣〉 ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} |
| 9 | 1, 8 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥 ∘𝑟 𝑅 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2326 ∀wral 2475 ∩ cin 3156 class class class wbr 4033 {copab 4093 dom cdm 4663 ‘cfv 5258 ∘𝑟 cofr 6134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-ofr 6136 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |