ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfofr GIF version

Theorem nfofr 5920
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
nfof.1 𝑥𝑅
Assertion
Ref Expression
nfofr 𝑥𝑟 𝑅

Proof of Theorem nfofr
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofr 5915 . 2 𝑟 𝑅 = {⟨𝑢, 𝑣⟩ ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢𝑤)𝑅(𝑣𝑤)}
2 nfcv 2240 . . . 4 𝑥(dom 𝑢 ∩ dom 𝑣)
3 nfcv 2240 . . . . 5 𝑥(𝑢𝑤)
4 nfof.1 . . . . 5 𝑥𝑅
5 nfcv 2240 . . . . 5 𝑥(𝑣𝑤)
63, 4, 5nfbr 3919 . . . 4 𝑥(𝑢𝑤)𝑅(𝑣𝑤)
72, 6nfralxy 2430 . . 3 𝑥𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢𝑤)𝑅(𝑣𝑤)
87nfopab 3936 . 2 𝑥{⟨𝑢, 𝑣⟩ ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢𝑤)𝑅(𝑣𝑤)}
91, 8nfcxfr 2237 1 𝑥𝑟 𝑅
Colors of variables: wff set class
Syntax hints:  wnfc 2227  wral 2375  cin 3020   class class class wbr 3875  {copab 3928  dom cdm 4477  cfv 5059  𝑟 cofr 5913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-v 2643  df-un 3025  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-ofr 5915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator