ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfofr GIF version

Theorem nfofr 6165
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
nfof.1 𝑥𝑅
Assertion
Ref Expression
nfofr 𝑥𝑟 𝑅

Proof of Theorem nfofr
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofr 6159 . 2 𝑟 𝑅 = {⟨𝑢, 𝑣⟩ ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢𝑤)𝑅(𝑣𝑤)}
2 nfcv 2348 . . . 4 𝑥(dom 𝑢 ∩ dom 𝑣)
3 nfcv 2348 . . . . 5 𝑥(𝑢𝑤)
4 nfof.1 . . . . 5 𝑥𝑅
5 nfcv 2348 . . . . 5 𝑥(𝑣𝑤)
63, 4, 5nfbr 4090 . . . 4 𝑥(𝑢𝑤)𝑅(𝑣𝑤)
72, 6nfralxy 2544 . . 3 𝑥𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢𝑤)𝑅(𝑣𝑤)
87nfopab 4112 . 2 𝑥{⟨𝑢, 𝑣⟩ ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢𝑤)𝑅(𝑣𝑤)}
91, 8nfcxfr 2345 1 𝑥𝑟 𝑅
Colors of variables: wff set class
Syntax hints:  wnfc 2335  wral 2484  cin 3165   class class class wbr 4044  {copab 4104  dom cdm 4675  cfv 5271  𝑟 cofr 6157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-ofr 6159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator