ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infsupneg Unicode version

Theorem infsupneg 9610
Description: If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 9609. (Contributed by Jim Kingdon, 15-Jan-2022.)
Hypotheses
Ref Expression
infsupneg.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
infsupneg.ss  |-  ( ph  ->  A  C_  RR )
Assertion
Ref Expression
infsupneg  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z ) ) )
Distinct variable groups:    y, A, z, w, x    ph, y
Allowed substitution hints:    ph( x, z, w)

Proof of Theorem infsupneg
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infsupneg.ex . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
2 breq2 4019 . . . . . . . 8  |-  ( a  =  x  ->  (
y  <  a  <->  y  <  x ) )
32notbid 668 . . . . . . 7  |-  ( a  =  x  ->  ( -.  y  <  a  <->  -.  y  <  x ) )
43ralbidv 2487 . . . . . 6  |-  ( a  =  x  ->  ( A. y  e.  A  -.  y  <  a  <->  A. y  e.  A  -.  y  <  x ) )
5 breq1 4018 . . . . . . . 8  |-  ( a  =  x  ->  (
a  <  y  <->  x  <  y ) )
65imbi1d 231 . . . . . . 7  |-  ( a  =  x  ->  (
( a  <  y  ->  E. z  e.  A  z  <  y )  <->  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )
76ralbidv 2487 . . . . . 6  |-  ( a  =  x  ->  ( A. y  e.  RR  ( a  <  y  ->  E. z  e.  A  z  <  y )  <->  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
84, 7anbi12d 473 . . . . 5  |-  ( a  =  x  ->  (
( A. y  e.  A  -.  y  < 
a  /\  A. y  e.  RR  ( a  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) ) )
98cbvrexv 2716 . . . 4  |-  ( E. a  e.  RR  ( A. y  e.  A  -.  y  <  a  /\  A. y  e.  RR  (
a  <  y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
101, 9sylibr 134 . . 3  |-  ( ph  ->  E. a  e.  RR  ( A. y  e.  A  -.  y  <  a  /\  A. y  e.  RR  (
a  <  y  ->  E. z  e.  A  z  <  y ) ) )
11 breq1 4018 . . . . . . 7  |-  ( b  =  y  ->  (
b  <  a  <->  y  <  a ) )
1211notbid 668 . . . . . 6  |-  ( b  =  y  ->  ( -.  b  <  a  <->  -.  y  <  a ) )
1312cbvralv 2715 . . . . 5  |-  ( A. b  e.  A  -.  b  <  a  <->  A. y  e.  A  -.  y  <  a )
14 breq1 4018 . . . . . . . . 9  |-  ( c  =  z  ->  (
c  <  b  <->  z  <  b ) )
1514cbvrexv 2716 . . . . . . . 8  |-  ( E. c  e.  A  c  <  b  <->  E. z  e.  A  z  <  b )
1615imbi2i 226 . . . . . . 7  |-  ( ( a  <  b  ->  E. c  e.  A  c  <  b )  <->  ( a  <  b  ->  E. z  e.  A  z  <  b ) )
1716ralbii 2493 . . . . . 6  |-  ( A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b )  <->  A. b  e.  RR  ( a  < 
b  ->  E. z  e.  A  z  <  b ) )
18 breq2 4019 . . . . . . . 8  |-  ( b  =  y  ->  (
a  <  b  <->  a  <  y ) )
19 breq2 4019 . . . . . . . . 9  |-  ( b  =  y  ->  (
z  <  b  <->  z  <  y ) )
2019rexbidv 2488 . . . . . . . 8  |-  ( b  =  y  ->  ( E. z  e.  A  z  <  b  <->  E. z  e.  A  z  <  y ) )
2118, 20imbi12d 234 . . . . . . 7  |-  ( b  =  y  ->  (
( a  <  b  ->  E. z  e.  A  z  <  b )  <->  ( a  <  y  ->  E. z  e.  A  z  <  y ) ) )
2221cbvralv 2715 . . . . . 6  |-  ( A. b  e.  RR  (
a  <  b  ->  E. z  e.  A  z  <  b )  <->  A. y  e.  RR  ( a  < 
y  ->  E. z  e.  A  z  <  y ) )
2317, 22bitri 184 . . . . 5  |-  ( A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b )  <->  A. y  e.  RR  ( a  < 
y  ->  E. z  e.  A  z  <  y ) )
2413, 23anbi12i 460 . . . 4  |-  ( ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  <-> 
( A. y  e.  A  -.  y  < 
a  /\  A. y  e.  RR  ( a  < 
y  ->  E. z  e.  A  z  <  y ) ) )
2524rexbii 2494 . . 3  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  <->  E. a  e.  RR  ( A. y  e.  A  -.  y  <  a  /\  A. y  e.  RR  (
a  <  y  ->  E. z  e.  A  z  <  y ) ) )
2610, 25sylibr 134 . 2  |-  ( ph  ->  E. a  e.  RR  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )
27 renegcl 8232 . . . . . 6  |-  ( a  e.  RR  ->  -u a  e.  RR )
2827ad2antlr 489 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  -u a  e.  RR )
29 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  a  e.  RR )
30 simprl 529 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  A. b  e.  A  -.  b  <  a )
31 elrabi 2902 . . . . . . . . . . . 12  |-  ( y  e.  { w  e.  RR  |  -u w  e.  A }  ->  y  e.  RR )
32 negeq 8164 . . . . . . . . . . . . . . 15  |-  ( w  =  y  ->  -u w  =  -u y )
3332eleq1d 2256 . . . . . . . . . . . . . 14  |-  ( w  =  y  ->  ( -u w  e.  A  <->  -u y  e.  A ) )
3433elrab3 2906 . . . . . . . . . . . . 13  |-  ( y  e.  RR  ->  (
y  e.  { w  e.  RR  |  -u w  e.  A }  <->  -u y  e.  A ) )
3534biimpd 144 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  (
y  e.  { w  e.  RR  |  -u w  e.  A }  ->  -u y  e.  A ) )
3631, 35mpcom 36 . . . . . . . . . . 11  |-  ( y  e.  { w  e.  RR  |  -u w  e.  A }  ->  -u y  e.  A )
37 breq1 4018 . . . . . . . . . . . . 13  |-  ( b  =  -u y  ->  (
b  <  a  <->  -u y  < 
a ) )
3837notbid 668 . . . . . . . . . . . 12  |-  ( b  =  -u y  ->  ( -.  b  <  a  <->  -.  -u y  <  a ) )
3938rspcv 2849 . . . . . . . . . . 11  |-  ( -u y  e.  A  ->  ( A. b  e.  A  -.  b  <  a  ->  -.  -u y  <  a
) )
4036, 39syl 14 . . . . . . . . . 10  |-  ( y  e.  { w  e.  RR  |  -u w  e.  A }  ->  ( A. b  e.  A  -.  b  <  a  ->  -.  -u y  <  a
) )
4140adantr 276 . . . . . . . . 9  |-  ( ( y  e.  { w  e.  RR  |  -u w  e.  A }  /\  a  e.  RR )  ->  ( A. b  e.  A  -.  b  <  a  ->  -.  -u y  <  a
) )
42 ltnegcon1 8434 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( -u a  < 
y  <->  -u y  <  a
) )
4342ancoms 268 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  a  e.  RR )  ->  ( -u a  < 
y  <->  -u y  <  a
) )
4443notbid 668 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  a  e.  RR )  ->  ( -.  -u a  <  y  <->  -.  -u y  < 
a ) )
4531, 44sylan 283 . . . . . . . . 9  |-  ( ( y  e.  { w  e.  RR  |  -u w  e.  A }  /\  a  e.  RR )  ->  ( -.  -u a  <  y  <->  -.  -u y  <  a ) )
4641, 45sylibrd 169 . . . . . . . 8  |-  ( ( y  e.  { w  e.  RR  |  -u w  e.  A }  /\  a  e.  RR )  ->  ( A. b  e.  A  -.  b  <  a  ->  -.  -u a  <  y
) )
4746ancoms 268 . . . . . . 7  |-  ( ( a  e.  RR  /\  y  e.  { w  e.  RR  |  -u w  e.  A } )  -> 
( A. b  e.  A  -.  b  < 
a  ->  -.  -u a  <  y ) )
4847ralrimdva 2567 . . . . . 6  |-  ( a  e.  RR  ->  ( A. b  e.  A  -.  b  <  a  ->  A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y ) )
4929, 30, 48sylc 62 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y
)
50 nfv 1538 . . . . . . . . . . . 12  |-  F/ c ( ph  /\  a  e.  RR )
51 nfcv 2329 . . . . . . . . . . . . 13  |-  F/_ c RR
52 nfv 1538 . . . . . . . . . . . . . 14  |-  F/ c  a  <  b
53 nfre1 2530 . . . . . . . . . . . . . 14  |-  F/ c E. c  e.  A  c  <  b
5452, 53nfim 1582 . . . . . . . . . . . . 13  |-  F/ c ( a  <  b  ->  E. c  e.  A  c  <  b )
5551, 54nfralya 2527 . . . . . . . . . . . 12  |-  F/ c A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b )
5650, 55nfan 1575 . . . . . . . . . . 11  |-  F/ c ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )
57 nfv 1538 . . . . . . . . . . 11  |-  F/ c  y  e.  RR
5856, 57nfan 1575 . . . . . . . . . 10  |-  F/ c ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )
59 nfv 1538 . . . . . . . . . 10  |-  F/ c  y  <  -u a
6058, 59nfan 1575 . . . . . . . . 9  |-  F/ c ( ( ( (
ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a )
61 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
c  e.  A )
62 infsupneg.ss . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  RR )
6362sseld 3166 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( c  e.  A  ->  c  e.  RR ) )
6463ad6antr 498 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
( c  e.  A  ->  c  e.  RR ) )
6561, 64mpd 13 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
c  e.  RR )
6665renegcld 8351 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  -u c  e.  RR )
6765recnd 8000 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
c  e.  CC )
6867negnegd 8273 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  -u -u c  =  c
)
6968, 61eqeltrd 2264 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  -u -u c  e.  A
)
70 negeq 8164 . . . . . . . . . . . . 13  |-  ( w  =  -u c  ->  -u w  =  -u -u c )
7170eleq1d 2256 . . . . . . . . . . . 12  |-  ( w  =  -u c  ->  ( -u w  e.  A  <->  -u -u c  e.  A ) )
7271elrab 2905 . . . . . . . . . . 11  |-  ( -u c  e.  { w  e.  RR  |  -u w  e.  A }  <->  ( -u c  e.  RR  /\  -u -u c  e.  A ) )
7366, 69, 72sylanbrc 417 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  -u c  e.  { w  e.  RR  |  -u w  e.  A } )
74 simp-4r 542 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
y  e.  RR )
75 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
c  <  -u y )
7665, 74, 75ltnegcon2d 8497 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
y  <  -u c )
77 breq2 4019 . . . . . . . . . . 11  |-  ( z  =  -u c  ->  (
y  <  z  <->  y  <  -u c ) )
7877rspcev 2853 . . . . . . . . . 10  |-  ( (
-u c  e.  {
w  e.  RR  |  -u w  e.  A }  /\  y  <  -u c
)  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  <  z
)
7973, 76, 78syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z )
80 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  a  e.  RR )
81 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  y  e.  RR )
82 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )
8380, 81, 82jca31 309 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )
84 ltnegcon2 8435 . . . . . . . . . . . . . 14  |-  ( ( y  e.  RR  /\  a  e.  RR )  ->  ( y  <  -u a  <->  a  <  -u y ) )
8584ancoms 268 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( y  <  -u a  <->  a  <  -u y ) )
8685adantr 276 . . . . . . . . . . . 12  |-  ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  ->  (
y  <  -u a  <->  a  <  -u y ) )
87 renegcl 8232 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  -u y  e.  RR )
88 breq2 4019 . . . . . . . . . . . . . . . . 17  |-  ( b  =  -u y  ->  (
a  <  b  <->  a  <  -u y ) )
89 breq2 4019 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  -u y  ->  (
c  <  b  <->  c  <  -u y ) )
9089rexbidv 2488 . . . . . . . . . . . . . . . . 17  |-  ( b  =  -u y  ->  ( E. c  e.  A  c  <  b  <->  E. c  e.  A  c  <  -u y ) )
9188, 90imbi12d 234 . . . . . . . . . . . . . . . 16  |-  ( b  =  -u y  ->  (
( a  <  b  ->  E. c  e.  A  c  <  b )  <->  ( a  <  -u y  ->  E. c  e.  A  c  <  -u y ) ) )
9291rspcv 2849 . . . . . . . . . . . . . . 15  |-  ( -u y  e.  RR  ->  ( A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b )  -> 
( a  <  -u y  ->  E. c  e.  A  c  <  -u y ) ) )
9387, 92syl 14 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  ( A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b )  -> 
( a  <  -u y  ->  E. c  e.  A  c  <  -u y ) ) )
9493adantl 277 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b )  ->  ( a  <  -u y  ->  E. c  e.  A  c  <  -u y ) ) )
9594imp 124 . . . . . . . . . . . 12  |-  ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  ->  (
a  <  -u y  ->  E. c  e.  A  c  <  -u y ) )
9686, 95sylbid 150 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  ->  (
y  <  -u a  ->  E. c  e.  A  c  <  -u y ) )
9796imp 124 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  <  -u a
)  ->  E. c  e.  A  c  <  -u y )
9883, 97sylan 283 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a )  ->  E. c  e.  A  c  <  -u y )
9960, 79, 98r19.29af 2628 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a )  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z )
10099ex 115 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  ( y  <  -u a  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  <  z
) )
101100ralrimiva 2560 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  ->  A. y  e.  RR  ( y  <  -u a  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
)
102101adantrl 478 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  A. y  e.  RR  ( y  <  -u a  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  <  z
) )
103 breq1 4018 . . . . . . . . 9  |-  ( x  =  -u a  ->  (
x  <  y  <->  -u a  < 
y ) )
104103notbid 668 . . . . . . . 8  |-  ( x  =  -u a  ->  ( -.  x  <  y  <->  -.  -u a  <  y ) )
105104ralbidv 2487 . . . . . . 7  |-  ( x  =  -u a  ->  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  <->  A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y
) )
106 breq2 4019 . . . . . . . . 9  |-  ( x  =  -u a  ->  (
y  <  x  <->  y  <  -u a ) )
107106imbi1d 231 . . . . . . . 8  |-  ( x  =  -u a  ->  (
( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )  <->  ( y  <  -u a  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) )
108107ralbidv 2487 . . . . . . 7  |-  ( x  =  -u a  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )  <->  A. y  e.  RR  (
y  <  -u a  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z ) ) )
109105, 108anbi12d 473 . . . . . 6  |-  ( x  =  -u a  ->  (
( A. y  e. 
{ w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
)  <->  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y  /\  A. y  e.  RR  ( y  <  -u a  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) ) )
110109rspcev 2853 . . . . 5  |-  ( (
-u a  e.  RR  /\  ( A. y  e. 
{ w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y  /\  A. y  e.  RR  ( y  <  -u a  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) )  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) )
11128, 49, 102, 110syl12anc 1246 . . . 4  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) )
112111ex 115 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  ( ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z ) ) ) )
113112rexlimdva 2604 . 2  |-  ( ph  ->  ( E. a  e.  RR  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) ) )
11426, 113mpd 13 1  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   A.wral 2465   E.wrex 2466   {crab 2469    C_ wss 3141   class class class wbr 4015   RRcr 7824    < clt 8006   -ucneg 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-sub 8144  df-neg 8145
This theorem is referenced by:  infssuzcldc  11966
  Copyright terms: Public domain W3C validator