ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infsupneg Unicode version

Theorem infsupneg 9384
Description: If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 9383. (Contributed by Jim Kingdon, 15-Jan-2022.)
Hypotheses
Ref Expression
infsupneg.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
infsupneg.ss  |-  ( ph  ->  A  C_  RR )
Assertion
Ref Expression
infsupneg  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z ) ) )
Distinct variable groups:    y, A, z, w, x    ph, y
Allowed substitution hints:    ph( x, z, w)

Proof of Theorem infsupneg
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infsupneg.ex . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
2 breq2 3928 . . . . . . . 8  |-  ( a  =  x  ->  (
y  <  a  <->  y  <  x ) )
32notbid 656 . . . . . . 7  |-  ( a  =  x  ->  ( -.  y  <  a  <->  -.  y  <  x ) )
43ralbidv 2435 . . . . . 6  |-  ( a  =  x  ->  ( A. y  e.  A  -.  y  <  a  <->  A. y  e.  A  -.  y  <  x ) )
5 breq1 3927 . . . . . . . 8  |-  ( a  =  x  ->  (
a  <  y  <->  x  <  y ) )
65imbi1d 230 . . . . . . 7  |-  ( a  =  x  ->  (
( a  <  y  ->  E. z  e.  A  z  <  y )  <->  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )
76ralbidv 2435 . . . . . 6  |-  ( a  =  x  ->  ( A. y  e.  RR  ( a  <  y  ->  E. z  e.  A  z  <  y )  <->  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
84, 7anbi12d 464 . . . . 5  |-  ( a  =  x  ->  (
( A. y  e.  A  -.  y  < 
a  /\  A. y  e.  RR  ( a  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) ) )
98cbvrexv 2653 . . . 4  |-  ( E. a  e.  RR  ( A. y  e.  A  -.  y  <  a  /\  A. y  e.  RR  (
a  <  y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
101, 9sylibr 133 . . 3  |-  ( ph  ->  E. a  e.  RR  ( A. y  e.  A  -.  y  <  a  /\  A. y  e.  RR  (
a  <  y  ->  E. z  e.  A  z  <  y ) ) )
11 breq1 3927 . . . . . . 7  |-  ( b  =  y  ->  (
b  <  a  <->  y  <  a ) )
1211notbid 656 . . . . . 6  |-  ( b  =  y  ->  ( -.  b  <  a  <->  -.  y  <  a ) )
1312cbvralv 2652 . . . . 5  |-  ( A. b  e.  A  -.  b  <  a  <->  A. y  e.  A  -.  y  <  a )
14 breq1 3927 . . . . . . . . 9  |-  ( c  =  z  ->  (
c  <  b  <->  z  <  b ) )
1514cbvrexv 2653 . . . . . . . 8  |-  ( E. c  e.  A  c  <  b  <->  E. z  e.  A  z  <  b )
1615imbi2i 225 . . . . . . 7  |-  ( ( a  <  b  ->  E. c  e.  A  c  <  b )  <->  ( a  <  b  ->  E. z  e.  A  z  <  b ) )
1716ralbii 2439 . . . . . 6  |-  ( A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b )  <->  A. b  e.  RR  ( a  < 
b  ->  E. z  e.  A  z  <  b ) )
18 breq2 3928 . . . . . . . 8  |-  ( b  =  y  ->  (
a  <  b  <->  a  <  y ) )
19 breq2 3928 . . . . . . . . 9  |-  ( b  =  y  ->  (
z  <  b  <->  z  <  y ) )
2019rexbidv 2436 . . . . . . . 8  |-  ( b  =  y  ->  ( E. z  e.  A  z  <  b  <->  E. z  e.  A  z  <  y ) )
2118, 20imbi12d 233 . . . . . . 7  |-  ( b  =  y  ->  (
( a  <  b  ->  E. z  e.  A  z  <  b )  <->  ( a  <  y  ->  E. z  e.  A  z  <  y ) ) )
2221cbvralv 2652 . . . . . 6  |-  ( A. b  e.  RR  (
a  <  b  ->  E. z  e.  A  z  <  b )  <->  A. y  e.  RR  ( a  < 
y  ->  E. z  e.  A  z  <  y ) )
2317, 22bitri 183 . . . . 5  |-  ( A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b )  <->  A. y  e.  RR  ( a  < 
y  ->  E. z  e.  A  z  <  y ) )
2413, 23anbi12i 455 . . . 4  |-  ( ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  <-> 
( A. y  e.  A  -.  y  < 
a  /\  A. y  e.  RR  ( a  < 
y  ->  E. z  e.  A  z  <  y ) ) )
2524rexbii 2440 . . 3  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  <->  E. a  e.  RR  ( A. y  e.  A  -.  y  <  a  /\  A. y  e.  RR  (
a  <  y  ->  E. z  e.  A  z  <  y ) ) )
2610, 25sylibr 133 . 2  |-  ( ph  ->  E. a  e.  RR  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )
27 renegcl 8016 . . . . . 6  |-  ( a  e.  RR  ->  -u a  e.  RR )
2827ad2antlr 480 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  -u a  e.  RR )
29 simplr 519 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  a  e.  RR )
30 simprl 520 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  A. b  e.  A  -.  b  <  a )
31 elrabi 2832 . . . . . . . . . . . 12  |-  ( y  e.  { w  e.  RR  |  -u w  e.  A }  ->  y  e.  RR )
32 negeq 7948 . . . . . . . . . . . . . . 15  |-  ( w  =  y  ->  -u w  =  -u y )
3332eleq1d 2206 . . . . . . . . . . . . . 14  |-  ( w  =  y  ->  ( -u w  e.  A  <->  -u y  e.  A ) )
3433elrab3 2836 . . . . . . . . . . . . 13  |-  ( y  e.  RR  ->  (
y  e.  { w  e.  RR  |  -u w  e.  A }  <->  -u y  e.  A ) )
3534biimpd 143 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  (
y  e.  { w  e.  RR  |  -u w  e.  A }  ->  -u y  e.  A ) )
3631, 35mpcom 36 . . . . . . . . . . 11  |-  ( y  e.  { w  e.  RR  |  -u w  e.  A }  ->  -u y  e.  A )
37 breq1 3927 . . . . . . . . . . . . 13  |-  ( b  =  -u y  ->  (
b  <  a  <->  -u y  < 
a ) )
3837notbid 656 . . . . . . . . . . . 12  |-  ( b  =  -u y  ->  ( -.  b  <  a  <->  -.  -u y  <  a ) )
3938rspcv 2780 . . . . . . . . . . 11  |-  ( -u y  e.  A  ->  ( A. b  e.  A  -.  b  <  a  ->  -.  -u y  <  a
) )
4036, 39syl 14 . . . . . . . . . 10  |-  ( y  e.  { w  e.  RR  |  -u w  e.  A }  ->  ( A. b  e.  A  -.  b  <  a  ->  -.  -u y  <  a
) )
4140adantr 274 . . . . . . . . 9  |-  ( ( y  e.  { w  e.  RR  |  -u w  e.  A }  /\  a  e.  RR )  ->  ( A. b  e.  A  -.  b  <  a  ->  -.  -u y  <  a
) )
42 ltnegcon1 8218 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( -u a  < 
y  <->  -u y  <  a
) )
4342ancoms 266 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  a  e.  RR )  ->  ( -u a  < 
y  <->  -u y  <  a
) )
4443notbid 656 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  a  e.  RR )  ->  ( -.  -u a  <  y  <->  -.  -u y  < 
a ) )
4531, 44sylan 281 . . . . . . . . 9  |-  ( ( y  e.  { w  e.  RR  |  -u w  e.  A }  /\  a  e.  RR )  ->  ( -.  -u a  <  y  <->  -.  -u y  <  a ) )
4641, 45sylibrd 168 . . . . . . . 8  |-  ( ( y  e.  { w  e.  RR  |  -u w  e.  A }  /\  a  e.  RR )  ->  ( A. b  e.  A  -.  b  <  a  ->  -.  -u a  <  y
) )
4746ancoms 266 . . . . . . 7  |-  ( ( a  e.  RR  /\  y  e.  { w  e.  RR  |  -u w  e.  A } )  -> 
( A. b  e.  A  -.  b  < 
a  ->  -.  -u a  <  y ) )
4847ralrimdva 2510 . . . . . 6  |-  ( a  e.  RR  ->  ( A. b  e.  A  -.  b  <  a  ->  A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y ) )
4929, 30, 48sylc 62 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y
)
50 nfv 1508 . . . . . . . . . . . 12  |-  F/ c ( ph  /\  a  e.  RR )
51 nfcv 2279 . . . . . . . . . . . . 13  |-  F/_ c RR
52 nfv 1508 . . . . . . . . . . . . . 14  |-  F/ c  a  <  b
53 nfre1 2474 . . . . . . . . . . . . . 14  |-  F/ c E. c  e.  A  c  <  b
5452, 53nfim 1551 . . . . . . . . . . . . 13  |-  F/ c ( a  <  b  ->  E. c  e.  A  c  <  b )
5551, 54nfralya 2471 . . . . . . . . . . . 12  |-  F/ c A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b )
5650, 55nfan 1544 . . . . . . . . . . 11  |-  F/ c ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )
57 nfv 1508 . . . . . . . . . . 11  |-  F/ c  y  e.  RR
5856, 57nfan 1544 . . . . . . . . . 10  |-  F/ c ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )
59 nfv 1508 . . . . . . . . . 10  |-  F/ c  y  <  -u a
6058, 59nfan 1544 . . . . . . . . 9  |-  F/ c ( ( ( (
ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a )
61 simplr 519 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
c  e.  A )
62 infsupneg.ss . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  RR )
6362sseld 3091 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( c  e.  A  ->  c  e.  RR ) )
6463ad6antr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
( c  e.  A  ->  c  e.  RR ) )
6561, 64mpd 13 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
c  e.  RR )
6665renegcld 8135 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  -u c  e.  RR )
6765recnd 7787 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
c  e.  CC )
6867negnegd 8057 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  -u -u c  =  c
)
6968, 61eqeltrd 2214 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  -u -u c  e.  A
)
70 negeq 7948 . . . . . . . . . . . . 13  |-  ( w  =  -u c  ->  -u w  =  -u -u c )
7170eleq1d 2206 . . . . . . . . . . . 12  |-  ( w  =  -u c  ->  ( -u w  e.  A  <->  -u -u c  e.  A ) )
7271elrab 2835 . . . . . . . . . . 11  |-  ( -u c  e.  { w  e.  RR  |  -u w  e.  A }  <->  ( -u c  e.  RR  /\  -u -u c  e.  A ) )
7366, 69, 72sylanbrc 413 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  -u c  e.  { w  e.  RR  |  -u w  e.  A } )
74 simp-4r 531 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
y  e.  RR )
75 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
c  <  -u y )
7665, 74, 75ltnegcon2d 8281 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
y  <  -u c )
77 breq2 3928 . . . . . . . . . . 11  |-  ( z  =  -u c  ->  (
y  <  z  <->  y  <  -u c ) )
7877rspcev 2784 . . . . . . . . . 10  |-  ( (
-u c  e.  {
w  e.  RR  |  -u w  e.  A }  /\  y  <  -u c
)  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  <  z
)
7973, 76, 78syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z )
80 simpllr 523 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  a  e.  RR )
81 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  y  e.  RR )
82 simplr 519 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )
8380, 81, 82jca31 307 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )
84 ltnegcon2 8219 . . . . . . . . . . . . . 14  |-  ( ( y  e.  RR  /\  a  e.  RR )  ->  ( y  <  -u a  <->  a  <  -u y ) )
8584ancoms 266 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( y  <  -u a  <->  a  <  -u y ) )
8685adantr 274 . . . . . . . . . . . 12  |-  ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  ->  (
y  <  -u a  <->  a  <  -u y ) )
87 renegcl 8016 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  -u y  e.  RR )
88 breq2 3928 . . . . . . . . . . . . . . . . 17  |-  ( b  =  -u y  ->  (
a  <  b  <->  a  <  -u y ) )
89 breq2 3928 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  -u y  ->  (
c  <  b  <->  c  <  -u y ) )
9089rexbidv 2436 . . . . . . . . . . . . . . . . 17  |-  ( b  =  -u y  ->  ( E. c  e.  A  c  <  b  <->  E. c  e.  A  c  <  -u y ) )
9188, 90imbi12d 233 . . . . . . . . . . . . . . . 16  |-  ( b  =  -u y  ->  (
( a  <  b  ->  E. c  e.  A  c  <  b )  <->  ( a  <  -u y  ->  E. c  e.  A  c  <  -u y ) ) )
9291rspcv 2780 . . . . . . . . . . . . . . 15  |-  ( -u y  e.  RR  ->  ( A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b )  -> 
( a  <  -u y  ->  E. c  e.  A  c  <  -u y ) ) )
9387, 92syl 14 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  ( A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b )  -> 
( a  <  -u y  ->  E. c  e.  A  c  <  -u y ) ) )
9493adantl 275 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b )  ->  ( a  <  -u y  ->  E. c  e.  A  c  <  -u y ) ) )
9594imp 123 . . . . . . . . . . . 12  |-  ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  ->  (
a  <  -u y  ->  E. c  e.  A  c  <  -u y ) )
9686, 95sylbid 149 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  ->  (
y  <  -u a  ->  E. c  e.  A  c  <  -u y ) )
9796imp 123 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  <  -u a
)  ->  E. c  e.  A  c  <  -u y )
9883, 97sylan 281 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a )  ->  E. c  e.  A  c  <  -u y )
9960, 79, 98r19.29af 2571 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a )  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z )
10099ex 114 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  ( y  <  -u a  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  <  z
) )
101100ralrimiva 2503 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  ->  A. y  e.  RR  ( y  <  -u a  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
)
102101adantrl 469 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  A. y  e.  RR  ( y  <  -u a  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  <  z
) )
103 breq1 3927 . . . . . . . . 9  |-  ( x  =  -u a  ->  (
x  <  y  <->  -u a  < 
y ) )
104103notbid 656 . . . . . . . 8  |-  ( x  =  -u a  ->  ( -.  x  <  y  <->  -.  -u a  <  y ) )
105104ralbidv 2435 . . . . . . 7  |-  ( x  =  -u a  ->  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  <->  A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y
) )
106 breq2 3928 . . . . . . . . 9  |-  ( x  =  -u a  ->  (
y  <  x  <->  y  <  -u a ) )
107106imbi1d 230 . . . . . . . 8  |-  ( x  =  -u a  ->  (
( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )  <->  ( y  <  -u a  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) )
108107ralbidv 2435 . . . . . . 7  |-  ( x  =  -u a  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )  <->  A. y  e.  RR  (
y  <  -u a  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z ) ) )
109105, 108anbi12d 464 . . . . . 6  |-  ( x  =  -u a  ->  (
( A. y  e. 
{ w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
)  <->  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y  /\  A. y  e.  RR  ( y  <  -u a  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) ) )
110109rspcev 2784 . . . . 5  |-  ( (
-u a  e.  RR  /\  ( A. y  e. 
{ w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y  /\  A. y  e.  RR  ( y  <  -u a  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) )  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) )
11128, 49, 102, 110syl12anc 1214 . . . 4  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) )
112111ex 114 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  ( ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z ) ) ) )
113112rexlimdva 2547 . 2  |-  ( ph  ->  ( E. a  e.  RR  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) ) )
11426, 113mpd 13 1  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415   {crab 2418    C_ wss 3066   class class class wbr 3924   RRcr 7612    < clt 7793   -ucneg 7927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-ltxr 7798  df-sub 7928  df-neg 7929
This theorem is referenced by:  infssuzcldc  11633
  Copyright terms: Public domain W3C validator