ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supinfneg Unicode version

Theorem supinfneg 9584
Description: If a set of real numbers has a least upper bound, the set of the negation of those numbers has a greatest lower bound. For a theorem which is similar but only for the boundedness part, see ublbneg 9602. (Contributed by Jim Kingdon, 15-Jan-2022.)
Hypotheses
Ref Expression
supinfneg.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
supinfneg.ss  |-  ( ph  ->  A  C_  RR )
Assertion
Ref Expression
supinfneg  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y ) ) )
Distinct variable groups:    y, A, z, w, x    ph, y
Allowed substitution hints:    ph( x, z, w)

Proof of Theorem supinfneg
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supinfneg.ex . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
2 breq1 4003 . . . . . . . 8  |-  ( a  =  x  ->  (
a  <  y  <->  x  <  y ) )
32notbid 667 . . . . . . 7  |-  ( a  =  x  ->  ( -.  a  <  y  <->  -.  x  <  y ) )
43ralbidv 2477 . . . . . 6  |-  ( a  =  x  ->  ( A. y  e.  A  -.  a  <  y  <->  A. y  e.  A  -.  x  <  y ) )
5 breq2 4004 . . . . . . . 8  |-  ( a  =  x  ->  (
y  <  a  <->  y  <  x ) )
65imbi1d 231 . . . . . . 7  |-  ( a  =  x  ->  (
( y  <  a  ->  E. z  e.  A  y  <  z )  <->  ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
76ralbidv 2477 . . . . . 6  |-  ( a  =  x  ->  ( A. y  e.  RR  ( y  <  a  ->  E. z  e.  A  y  <  z )  <->  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
84, 7anbi12d 473 . . . . 5  |-  ( a  =  x  ->  (
( A. y  e.  A  -.  a  < 
y  /\  A. y  e.  RR  ( y  < 
a  ->  E. z  e.  A  y  <  z ) )  <->  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )
98cbvrexv 2704 . . . 4  |-  ( E. a  e.  RR  ( A. y  e.  A  -.  a  <  y  /\  A. y  e.  RR  (
y  <  a  ->  E. z  e.  A  y  <  z ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
101, 9sylibr 134 . . 3  |-  ( ph  ->  E. a  e.  RR  ( A. y  e.  A  -.  a  <  y  /\  A. y  e.  RR  (
y  <  a  ->  E. z  e.  A  y  <  z ) ) )
11 breq2 4004 . . . . . . 7  |-  ( b  =  y  ->  (
a  <  b  <->  a  <  y ) )
1211notbid 667 . . . . . 6  |-  ( b  =  y  ->  ( -.  a  <  b  <->  -.  a  <  y ) )
1312cbvralv 2703 . . . . 5  |-  ( A. b  e.  A  -.  a  <  b  <->  A. y  e.  A  -.  a  <  y )
14 breq2 4004 . . . . . . . . 9  |-  ( c  =  z  ->  (
b  <  c  <->  b  <  z ) )
1514cbvrexv 2704 . . . . . . . 8  |-  ( E. c  e.  A  b  <  c  <->  E. z  e.  A  b  <  z )
1615imbi2i 226 . . . . . . 7  |-  ( ( b  <  a  ->  E. c  e.  A  b  <  c )  <->  ( b  <  a  ->  E. z  e.  A  b  <  z ) )
1716ralbii 2483 . . . . . 6  |-  ( A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c )  <->  A. b  e.  RR  ( b  < 
a  ->  E. z  e.  A  b  <  z ) )
18 breq1 4003 . . . . . . . 8  |-  ( b  =  y  ->  (
b  <  a  <->  y  <  a ) )
19 breq1 4003 . . . . . . . . 9  |-  ( b  =  y  ->  (
b  <  z  <->  y  <  z ) )
2019rexbidv 2478 . . . . . . . 8  |-  ( b  =  y  ->  ( E. z  e.  A  b  <  z  <->  E. z  e.  A  y  <  z ) )
2118, 20imbi12d 234 . . . . . . 7  |-  ( b  =  y  ->  (
( b  <  a  ->  E. z  e.  A  b  <  z )  <->  ( y  <  a  ->  E. z  e.  A  y  <  z ) ) )
2221cbvralv 2703 . . . . . 6  |-  ( A. b  e.  RR  (
b  <  a  ->  E. z  e.  A  b  <  z )  <->  A. y  e.  RR  ( y  < 
a  ->  E. z  e.  A  y  <  z ) )
2317, 22bitri 184 . . . . 5  |-  ( A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c )  <->  A. y  e.  RR  ( y  < 
a  ->  E. z  e.  A  y  <  z ) )
2413, 23anbi12i 460 . . . 4  |-  ( ( A. b  e.  A  -.  a  <  b  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  <-> 
( A. y  e.  A  -.  a  < 
y  /\  A. y  e.  RR  ( y  < 
a  ->  E. z  e.  A  y  <  z ) ) )
2524rexbii 2484 . . 3  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <  b  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  <->  E. a  e.  RR  ( A. y  e.  A  -.  a  <  y  /\  A. y  e.  RR  (
y  <  a  ->  E. z  e.  A  y  <  z ) ) )
2610, 25sylibr 134 . 2  |-  ( ph  ->  E. a  e.  RR  ( A. b  e.  A  -.  a  <  b  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) ) )
27 renegcl 8208 . . . . . 6  |-  ( a  e.  RR  ->  -u a  e.  RR )
2827ad2antlr 489 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  a  <  b  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) ) )  ->  -u a  e.  RR )
29 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  a  <  b  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) ) )  ->  a  e.  RR )
30 simprl 529 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  a  <  b  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) ) )  ->  A. b  e.  A  -.  a  <  b )
31 elrabi 2890 . . . . . . . . . . . 12  |-  ( y  e.  { w  e.  RR  |  -u w  e.  A }  ->  y  e.  RR )
32 negeq 8140 . . . . . . . . . . . . . . 15  |-  ( w  =  y  ->  -u w  =  -u y )
3332eleq1d 2246 . . . . . . . . . . . . . 14  |-  ( w  =  y  ->  ( -u w  e.  A  <->  -u y  e.  A ) )
3433elrab3 2894 . . . . . . . . . . . . 13  |-  ( y  e.  RR  ->  (
y  e.  { w  e.  RR  |  -u w  e.  A }  <->  -u y  e.  A ) )
3534biimpd 144 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  (
y  e.  { w  e.  RR  |  -u w  e.  A }  ->  -u y  e.  A ) )
3631, 35mpcom 36 . . . . . . . . . . 11  |-  ( y  e.  { w  e.  RR  |  -u w  e.  A }  ->  -u y  e.  A )
37 breq2 4004 . . . . . . . . . . . . 13  |-  ( b  =  -u y  ->  (
a  <  b  <->  a  <  -u y ) )
3837notbid 667 . . . . . . . . . . . 12  |-  ( b  =  -u y  ->  ( -.  a  <  b  <->  -.  a  <  -u y ) )
3938rspcv 2837 . . . . . . . . . . 11  |-  ( -u y  e.  A  ->  ( A. b  e.  A  -.  a  <  b  ->  -.  a  <  -u y
) )
4036, 39syl 14 . . . . . . . . . 10  |-  ( y  e.  { w  e.  RR  |  -u w  e.  A }  ->  ( A. b  e.  A  -.  a  <  b  ->  -.  a  <  -u y
) )
4140adantr 276 . . . . . . . . 9  |-  ( ( y  e.  { w  e.  RR  |  -u w  e.  A }  /\  a  e.  RR )  ->  ( A. b  e.  A  -.  a  <  b  ->  -.  a  <  -u y
) )
42 ltnegcon2 8411 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  a  e.  RR )  ->  ( y  <  -u a  <->  a  <  -u y ) )
4342notbid 667 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  a  e.  RR )  ->  ( -.  y  <  -u a  <->  -.  a  <  -u y ) )
4431, 43sylan 283 . . . . . . . . 9  |-  ( ( y  e.  { w  e.  RR  |  -u w  e.  A }  /\  a  e.  RR )  ->  ( -.  y  <  -u a  <->  -.  a  <  -u y
) )
4541, 44sylibrd 169 . . . . . . . 8  |-  ( ( y  e.  { w  e.  RR  |  -u w  e.  A }  /\  a  e.  RR )  ->  ( A. b  e.  A  -.  a  <  b  ->  -.  y  <  -u a
) )
4645ancoms 268 . . . . . . 7  |-  ( ( a  e.  RR  /\  y  e.  { w  e.  RR  |  -u w  e.  A } )  -> 
( A. b  e.  A  -.  a  < 
b  ->  -.  y  <  -u a ) )
4746ralrimdva 2557 . . . . . 6  |-  ( a  e.  RR  ->  ( A. b  e.  A  -.  a  <  b  ->  A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  y  <  -u a ) )
4829, 30, 47sylc 62 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  a  <  b  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) ) )  ->  A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  y  <  -u a
)
49 nfv 1528 . . . . . . . . . . . 12  |-  F/ c ( ph  /\  a  e.  RR )
50 nfcv 2319 . . . . . . . . . . . . 13  |-  F/_ c RR
51 nfv 1528 . . . . . . . . . . . . . 14  |-  F/ c  b  <  a
52 nfre1 2520 . . . . . . . . . . . . . 14  |-  F/ c E. c  e.  A  b  <  c
5351, 52nfim 1572 . . . . . . . . . . . . 13  |-  F/ c ( b  <  a  ->  E. c  e.  A  b  <  c )
5450, 53nfralya 2517 . . . . . . . . . . . 12  |-  F/ c A. b  e.  RR  ( b  <  a  ->  E. c  e.  A  b  <  c )
5549, 54nfan 1565 . . . . . . . . . . 11  |-  F/ c ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( b  <  a  ->  E. c  e.  A  b  <  c ) )
56 nfv 1528 . . . . . . . . . . 11  |-  F/ c  y  e.  RR
5755, 56nfan 1565 . . . . . . . . . 10  |-  F/ c ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( b  < 
a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )
58 nfv 1528 . . . . . . . . . 10  |-  F/ c
-u a  <  y
5957, 58nfan 1565 . . . . . . . . 9  |-  F/ c ( ( ( (
ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( b  < 
a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y )
60 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y
)  /\  c  e.  A )  /\  -u y  <  c )  ->  c  e.  A )
61 supinfneg.ss . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  RR )
6261sseld 3154 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( c  e.  A  ->  c  e.  RR ) )
6362ad6antr 498 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y
)  /\  c  e.  A )  /\  -u y  <  c )  ->  (
c  e.  A  -> 
c  e.  RR ) )
6460, 63mpd 13 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y
)  /\  c  e.  A )  /\  -u y  <  c )  ->  c  e.  RR )
6564renegcld 8327 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y
)  /\  c  e.  A )  /\  -u y  <  c )  ->  -u c  e.  RR )
6664recnd 7976 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y
)  /\  c  e.  A )  /\  -u y  <  c )  ->  c  e.  CC )
6766negnegd 8249 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y
)  /\  c  e.  A )  /\  -u y  <  c )  ->  -u -u c  =  c )
6867, 60eqeltrd 2254 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y
)  /\  c  e.  A )  /\  -u y  <  c )  ->  -u -u c  e.  A )
69 negeq 8140 . . . . . . . . . . . . 13  |-  ( w  =  -u c  ->  -u w  =  -u -u c )
7069eleq1d 2246 . . . . . . . . . . . 12  |-  ( w  =  -u c  ->  ( -u w  e.  A  <->  -u -u c  e.  A ) )
7170elrab 2893 . . . . . . . . . . 11  |-  ( -u c  e.  { w  e.  RR  |  -u w  e.  A }  <->  ( -u c  e.  RR  /\  -u -u c  e.  A ) )
7265, 68, 71sylanbrc 417 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y
)  /\  c  e.  A )  /\  -u y  <  c )  ->  -u c  e.  { w  e.  RR  |  -u w  e.  A } )
73 simp-4r 542 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y
)  /\  c  e.  A )  /\  -u y  <  c )  ->  y  e.  RR )
74 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y
)  /\  c  e.  A )  /\  -u y  <  c )  ->  -u y  <  c )
7573, 64, 74ltnegcon1d 8472 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y
)  /\  c  e.  A )  /\  -u y  <  c )  ->  -u c  <  y )
76 breq1 4003 . . . . . . . . . . 11  |-  ( z  =  -u c  ->  (
z  <  y  <->  -u c  < 
y ) )
7776rspcev 2841 . . . . . . . . . 10  |-  ( (
-u c  e.  {
w  e.  RR  |  -u w  e.  A }  /\  -u c  <  y
)  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  <  y
)
7872, 75, 77syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y
)  /\  c  e.  A )  /\  -u y  <  c )  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  <  y
)
79 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  ->  a  e.  RR )
80 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  ->  y  e.  RR )
81 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  ->  A. b  e.  RR  ( b  <  a  ->  E. c  e.  A  b  <  c ) )
8279, 80, 81jca31 309 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  ->  ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) ) )
83 ltnegcon1 8410 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( -u a  < 
y  <->  -u y  <  a
) )
8483adantr 276 . . . . . . . . . . . 12  |-  ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  ( b  < 
a  ->  E. c  e.  A  b  <  c ) )  ->  ( -u a  <  y  <->  -u y  < 
a ) )
85 renegcl 8208 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  -u y  e.  RR )
86 breq1 4003 . . . . . . . . . . . . . . . . 17  |-  ( b  =  -u y  ->  (
b  <  a  <->  -u y  < 
a ) )
87 breq1 4003 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  -u y  ->  (
b  <  c  <->  -u y  < 
c ) )
8887rexbidv 2478 . . . . . . . . . . . . . . . . 17  |-  ( b  =  -u y  ->  ( E. c  e.  A  b  <  c  <->  E. c  e.  A  -u y  < 
c ) )
8986, 88imbi12d 234 . . . . . . . . . . . . . . . 16  |-  ( b  =  -u y  ->  (
( b  <  a  ->  E. c  e.  A  b  <  c )  <->  ( -u y  <  a  ->  E. c  e.  A  -u y  < 
c ) ) )
9089rspcv 2837 . . . . . . . . . . . . . . 15  |-  ( -u y  e.  RR  ->  ( A. b  e.  RR  ( b  <  a  ->  E. c  e.  A  b  <  c )  -> 
( -u y  <  a  ->  E. c  e.  A  -u y  <  c ) ) )
9185, 90syl 14 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  ( A. b  e.  RR  ( b  <  a  ->  E. c  e.  A  b  <  c )  -> 
( -u y  <  a  ->  E. c  e.  A  -u y  <  c ) ) )
9291adantl 277 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( A. b  e.  RR  ( b  < 
a  ->  E. c  e.  A  b  <  c )  ->  ( -u y  <  a  ->  E. c  e.  A  -u y  < 
c ) ) )
9392imp 124 . . . . . . . . . . . 12  |-  ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  ( b  < 
a  ->  E. c  e.  A  b  <  c ) )  ->  ( -u y  <  a  ->  E. c  e.  A  -u y  <  c ) )
9484, 93sylbid 150 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  ( b  < 
a  ->  E. c  e.  A  b  <  c ) )  ->  ( -u a  <  y  ->  E. c  e.  A  -u y  <  c ) )
9594imp 124 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  -u a  <  y
)  ->  E. c  e.  A  -u y  < 
c )
9682, 95sylan 283 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( b  < 
a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y )  ->  E. c  e.  A  -u y  < 
c )
9759, 78, 96r19.29af 2618 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( b  < 
a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  /\  -u a  <  y )  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  <  y
)
9897ex 115 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( b  <  a  ->  E. c  e.  A  b  <  c ) )  /\  y  e.  RR )  ->  ( -u a  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  <  y
) )
9998ralrimiva 2550 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  ->  A. y  e.  RR  ( -u a  <  y  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
z  <  y )
)
10099adantrl 478 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  a  <  b  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) ) )  ->  A. y  e.  RR  ( -u a  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  <  y
) )
101 breq2 4004 . . . . . . . . 9  |-  ( x  =  -u a  ->  (
y  <  x  <->  y  <  -u a ) )
102101notbid 667 . . . . . . . 8  |-  ( x  =  -u a  ->  ( -.  y  <  x  <->  -.  y  <  -u a ) )
103102ralbidv 2477 . . . . . . 7  |-  ( x  =  -u a  ->  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  y  <  x  <->  A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  y  <  -u a
) )
104 breq1 4003 . . . . . . . . 9  |-  ( x  =  -u a  ->  (
x  <  y  <->  -u a  < 
y ) )
105104imbi1d 231 . . . . . . . 8  |-  ( x  =  -u a  ->  (
( x  <  y  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
z  <  y )  <->  (
-u a  <  y  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
z  <  y )
) )
106105ralbidv 2477 . . . . . . 7  |-  ( x  =  -u a  ->  ( A. y  e.  RR  ( x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y )  <->  A. y  e.  RR  ( -u a  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  <  y
) ) )
107103, 106anbi12d 473 . . . . . 6  |-  ( x  =  -u a  ->  (
( A. y  e. 
{ w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y ) )  <->  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  y  <  -u a  /\  A. y  e.  RR  ( -u a  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y ) ) ) )
108107rspcev 2841 . . . . 5  |-  ( (
-u a  e.  RR  /\  ( A. y  e. 
{ w  e.  RR  |  -u w  e.  A }  -.  y  <  -u a  /\  A. y  e.  RR  ( -u a  <  y  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
z  <  y )
) )  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y ) ) )
10928, 48, 100, 108syl12anc 1236 . . . 4  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  a  <  b  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) ) )  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y ) ) )
110109ex 115 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  ( ( A. b  e.  A  -.  a  <  b  /\  A. b  e.  RR  (
b  <  a  ->  E. c  e.  A  b  <  c ) )  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y ) ) ) )
111110rexlimdva 2594 . 2  |-  ( ph  ->  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <  b  /\  A. b  e.  RR  ( b  < 
a  ->  E. c  e.  A  b  <  c ) )  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y ) ) ) )
11226, 111mpd 13 1  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459    C_ wss 3129   class class class wbr 4000   RRcr 7801    < clt 7982   -ucneg 8119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-ltxr 7987  df-sub 8120  df-neg 8121
This theorem is referenced by:  supminfex  9586  infssuzex  11933
  Copyright terms: Public domain W3C validator