Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrn | GIF version |
Description: Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrn | ⊢ Ⅎ𝑥ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4622 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | nfrn.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcnv 4790 | . . 3 ⊢ Ⅎ𝑥◡𝐴 |
4 | 3 | nfdm 4855 | . 2 ⊢ Ⅎ𝑥dom ◡𝐴 |
5 | 1, 4 | nfcxfr 2309 | 1 ⊢ Ⅎ𝑥ran 𝐴 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2299 ◡ccnv 4610 dom cdm 4611 ran crn 4612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: nfima 4961 nff 5344 nffo 5419 fliftfun 5775 nfseq 10411 |
Copyright terms: Public domain | W3C validator |