| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrn | GIF version | ||
| Description: Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrn | ⊢ Ⅎ𝑥ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 4729 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 2 | nfrn.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcnv 4900 | . . 3 ⊢ Ⅎ𝑥◡𝐴 |
| 4 | 3 | nfdm 4967 | . 2 ⊢ Ⅎ𝑥dom ◡𝐴 |
| 5 | 1, 4 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥ran 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2359 ◡ccnv 4717 dom cdm 4718 ran crn 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-cnv 4726 df-dm 4728 df-rn 4729 |
| This theorem is referenced by: nfima 5075 nff 5469 nffo 5546 fliftfun 5919 nfseq 10674 |
| Copyright terms: Public domain | W3C validator |