![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfrn | GIF version |
Description: Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrn | ⊢ Ⅎ𝑥ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4670 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | nfrn.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcnv 4841 | . . 3 ⊢ Ⅎ𝑥◡𝐴 |
4 | 3 | nfdm 4906 | . 2 ⊢ Ⅎ𝑥dom ◡𝐴 |
5 | 1, 4 | nfcxfr 2333 | 1 ⊢ Ⅎ𝑥ran 𝐴 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2323 ◡ccnv 4658 dom cdm 4659 ran crn 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-cnv 4667 df-dm 4669 df-rn 4670 |
This theorem is referenced by: nfima 5013 nff 5400 nffo 5475 fliftfun 5839 nfseq 10528 |
Copyright terms: Public domain | W3C validator |