| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnre | Unicode version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssre 9042 |
. 2
| |
| 2 | 1 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-int 3886 df-inn 9039 |
| This theorem is referenced by: nnrei 9047 peano2nn 9050 nn1suc 9057 nnge1 9061 nnle1eq1 9062 nngt0 9063 nnnlt1 9064 nnap0 9067 nn2ge 9071 nn1gt1 9072 nndivre 9074 nnrecgt0 9076 nnsub 9077 arch 9294 nnrecl 9295 bndndx 9296 nn0ge0 9322 0mnnnnn0 9329 nnnegz 9377 elnnz 9384 elz2 9446 gtndiv 9470 prime 9474 btwnz 9494 qre 9748 elpq 9772 elpqb 9773 nnrp 9787 nnledivrp 9890 fzo1fzo0n0 10309 elfzo0le 10311 fzonmapblen 10313 ubmelfzo 10331 fzonn0p1p1 10344 elfzom1p1elfzo 10345 ubmelm1fzo 10357 subfzo0 10373 adddivflid 10437 flltdivnn0lt 10449 intfracq 10467 flqdiv 10468 m1modnnsub1 10517 addmodid 10519 modfzo0difsn 10542 nnlesq 10790 facndiv 10886 faclbnd 10888 faclbnd3 10890 bcval5 10910 seq3coll 10989 ccatval21sw 11064 caucvgre 11325 efaddlem 12018 nndivdvds 12140 nno 12250 nnoddm1d2 12254 divalglemnn 12262 divalg2 12270 ndvdsadd 12275 gcdmultiple 12374 gcdmultiplez 12375 gcdzeq 12376 sqgcd 12383 dvdssqlem 12384 lcmgcdlem 12432 coprmgcdb 12443 qredeq 12451 qredeu 12452 prmdvdsfz 12494 sqrt2irr 12517 divdenle 12552 phibndlem 12571 hashgcdlem 12593 oddprm 12615 pythagtriplem10 12625 pythagtriplem12 12631 pythagtriplem14 12633 pythagtriplem16 12635 pythagtriplem19 12638 pclemub 12643 pc2dvds 12686 pcmpt 12699 fldivp1 12704 pcbc 12707 infpnlem1 12715 oddennn 12796 exmidunben 12830 mulgnegnn 13501 znidomb 14453 lgsval4a 15532 gausslemma2dlem0c 15561 gausslemma2dlem0d 15562 gausslemma2dlem1a 15568 gausslemma2dlem2 15572 gausslemma2dlem3 15573 lgsquadlem1 15587 lgsquadlem2 15588 2lgslem1a1 15596 |
| Copyright terms: Public domain | W3C validator |