| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnre | Unicode version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssre 9114 |
. 2
| |
| 2 | 1 | sseli 3220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-int 3924 df-inn 9111 |
| This theorem is referenced by: nnrei 9119 peano2nn 9122 nn1suc 9129 nnge1 9133 nnle1eq1 9134 nngt0 9135 nnnlt1 9136 nnap0 9139 nn2ge 9143 nn1gt1 9144 nndivre 9146 nnrecgt0 9148 nnsub 9149 arch 9366 nnrecl 9367 bndndx 9368 nn0ge0 9394 0mnnnnn0 9401 nnnegz 9449 elnnz 9456 elz2 9518 gtndiv 9542 prime 9546 btwnz 9566 qre 9820 elpq 9844 elpqb 9845 nnrp 9859 nnledivrp 9962 fzo1fzo0n0 10383 elfzo0le 10385 fzonmapblen 10387 ubmelfzo 10406 fzonn0p1p1 10419 elfzom1p1elfzo 10420 ubmelm1fzo 10432 subfzo0 10448 adddivflid 10512 flltdivnn0lt 10524 intfracq 10542 flqdiv 10543 m1modnnsub1 10592 addmodid 10594 modfzo0difsn 10617 nnlesq 10865 facndiv 10961 faclbnd 10963 faclbnd3 10965 bcval5 10985 seq3coll 11064 ccatval21sw 11140 caucvgre 11492 efaddlem 12185 nndivdvds 12307 nno 12417 nnoddm1d2 12421 divalglemnn 12429 divalg2 12437 ndvdsadd 12442 gcdmultiple 12541 gcdmultiplez 12542 gcdzeq 12543 sqgcd 12550 dvdssqlem 12551 lcmgcdlem 12599 coprmgcdb 12610 qredeq 12618 qredeu 12619 prmdvdsfz 12661 sqrt2irr 12684 divdenle 12719 phibndlem 12738 hashgcdlem 12760 oddprm 12782 pythagtriplem10 12792 pythagtriplem12 12798 pythagtriplem14 12800 pythagtriplem16 12802 pythagtriplem19 12805 pclemub 12810 pc2dvds 12853 pcmpt 12866 fldivp1 12871 pcbc 12874 infpnlem1 12882 oddennn 12963 exmidunben 12997 mulgnegnn 13669 znidomb 14622 lgsval4a 15701 gausslemma2dlem0c 15730 gausslemma2dlem0d 15731 gausslemma2dlem1a 15737 gausslemma2dlem2 15741 gausslemma2dlem3 15742 lgsquadlem1 15756 lgsquadlem2 15757 2lgslem1a1 15765 |
| Copyright terms: Public domain | W3C validator |