Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnre | Unicode version |
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 8857 | . 2 | |
2 | 1 | sseli 3137 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cr 7748 cn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-v 2727 df-in 3121 df-ss 3128 df-int 3824 df-inn 8854 |
This theorem is referenced by: nnrei 8862 peano2nn 8865 nn1suc 8872 nnge1 8876 nnle1eq1 8877 nngt0 8878 nnnlt1 8879 nnap0 8882 nn2ge 8886 nn1gt1 8887 nndivre 8889 nnrecgt0 8891 nnsub 8892 arch 9107 nnrecl 9108 bndndx 9109 nn0ge0 9135 0mnnnnn0 9142 nnnegz 9190 elnnz 9197 elz2 9258 gtndiv 9282 prime 9286 btwnz 9306 qre 9559 elpq 9582 elpqb 9583 nnrp 9595 nnledivrp 9698 fzo1fzo0n0 10114 elfzo0le 10116 fzonmapblen 10118 ubmelfzo 10131 fzonn0p1p1 10144 elfzom1p1elfzo 10145 ubmelm1fzo 10157 subfzo0 10173 adddivflid 10223 flltdivnn0lt 10235 intfracq 10251 flqdiv 10252 m1modnnsub1 10301 addmodid 10303 modfzo0difsn 10326 nnlesq 10554 facndiv 10648 faclbnd 10650 faclbnd3 10652 bcval5 10672 seq3coll 10751 caucvgre 10919 efaddlem 11611 nndivdvds 11732 nno 11839 nnoddm1d2 11843 divalglemnn 11851 divalg2 11859 ndvdsadd 11864 gcdmultiple 11949 gcdmultiplez 11950 gcdzeq 11951 sqgcd 11958 dvdssqlem 11959 lcmgcdlem 12005 coprmgcdb 12016 qredeq 12024 qredeu 12025 prmdvdsfz 12067 sqrt2irr 12090 divdenle 12125 phibndlem 12144 hashgcdlem 12166 oddprm 12187 pythagtriplem10 12197 pythagtriplem12 12203 pythagtriplem14 12205 pythagtriplem16 12207 pythagtriplem19 12210 pclemub 12215 pc2dvds 12257 pcmpt 12269 fldivp1 12274 pcbc 12277 infpnlem1 12285 oddennn 12321 exmidunben 12355 lgsval4a 13523 |
Copyright terms: Public domain | W3C validator |