![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnre | Unicode version |
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 8988 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3176 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-in 3160 df-ss 3167 df-int 3872 df-inn 8985 |
This theorem is referenced by: nnrei 8993 peano2nn 8996 nn1suc 9003 nnge1 9007 nnle1eq1 9008 nngt0 9009 nnnlt1 9010 nnap0 9013 nn2ge 9017 nn1gt1 9018 nndivre 9020 nnrecgt0 9022 nnsub 9023 arch 9240 nnrecl 9241 bndndx 9242 nn0ge0 9268 0mnnnnn0 9275 nnnegz 9323 elnnz 9330 elz2 9391 gtndiv 9415 prime 9419 btwnz 9439 qre 9693 elpq 9717 elpqb 9718 nnrp 9732 nnledivrp 9835 fzo1fzo0n0 10253 elfzo0le 10255 fzonmapblen 10257 ubmelfzo 10270 fzonn0p1p1 10283 elfzom1p1elfzo 10284 ubmelm1fzo 10296 subfzo0 10312 adddivflid 10364 flltdivnn0lt 10376 intfracq 10394 flqdiv 10395 m1modnnsub1 10444 addmodid 10446 modfzo0difsn 10469 nnlesq 10717 facndiv 10813 faclbnd 10815 faclbnd3 10817 bcval5 10837 seq3coll 10916 caucvgre 11128 efaddlem 11820 nndivdvds 11942 nno 12050 nnoddm1d2 12054 divalglemnn 12062 divalg2 12070 ndvdsadd 12075 gcdmultiple 12160 gcdmultiplez 12161 gcdzeq 12162 sqgcd 12169 dvdssqlem 12170 lcmgcdlem 12218 coprmgcdb 12229 qredeq 12237 qredeu 12238 prmdvdsfz 12280 sqrt2irr 12303 divdenle 12338 phibndlem 12357 hashgcdlem 12379 oddprm 12400 pythagtriplem10 12410 pythagtriplem12 12416 pythagtriplem14 12418 pythagtriplem16 12420 pythagtriplem19 12423 pclemub 12428 pc2dvds 12471 pcmpt 12484 fldivp1 12489 pcbc 12492 infpnlem1 12500 oddennn 12552 exmidunben 12586 mulgnegnn 13205 znidomb 14157 lgsval4a 15179 gausslemma2dlem0c 15208 gausslemma2dlem0d 15209 gausslemma2dlem1a 15215 gausslemma2dlem2 15219 gausslemma2dlem3 15220 lgsquadlem1 15234 lgsquadlem2 15235 2lgslem1a1 15243 |
Copyright terms: Public domain | W3C validator |