![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnre | Unicode version |
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 8986 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3175 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-in 3159 df-ss 3166 df-int 3871 df-inn 8983 |
This theorem is referenced by: nnrei 8991 peano2nn 8994 nn1suc 9001 nnge1 9005 nnle1eq1 9006 nngt0 9007 nnnlt1 9008 nnap0 9011 nn2ge 9015 nn1gt1 9016 nndivre 9018 nnrecgt0 9020 nnsub 9021 arch 9237 nnrecl 9238 bndndx 9239 nn0ge0 9265 0mnnnnn0 9272 nnnegz 9320 elnnz 9327 elz2 9388 gtndiv 9412 prime 9416 btwnz 9436 qre 9690 elpq 9714 elpqb 9715 nnrp 9729 nnledivrp 9832 fzo1fzo0n0 10250 elfzo0le 10252 fzonmapblen 10254 ubmelfzo 10267 fzonn0p1p1 10280 elfzom1p1elfzo 10281 ubmelm1fzo 10293 subfzo0 10309 adddivflid 10361 flltdivnn0lt 10373 intfracq 10391 flqdiv 10392 m1modnnsub1 10441 addmodid 10443 modfzo0difsn 10466 nnlesq 10714 facndiv 10810 faclbnd 10812 faclbnd3 10814 bcval5 10834 seq3coll 10913 caucvgre 11125 efaddlem 11817 nndivdvds 11939 nno 12047 nnoddm1d2 12051 divalglemnn 12059 divalg2 12067 ndvdsadd 12072 gcdmultiple 12157 gcdmultiplez 12158 gcdzeq 12159 sqgcd 12166 dvdssqlem 12167 lcmgcdlem 12215 coprmgcdb 12226 qredeq 12234 qredeu 12235 prmdvdsfz 12277 sqrt2irr 12300 divdenle 12335 phibndlem 12354 hashgcdlem 12376 oddprm 12397 pythagtriplem10 12407 pythagtriplem12 12413 pythagtriplem14 12415 pythagtriplem16 12417 pythagtriplem19 12420 pclemub 12425 pc2dvds 12468 pcmpt 12481 fldivp1 12486 pcbc 12489 infpnlem1 12497 oddennn 12549 exmidunben 12583 mulgnegnn 13202 znidomb 14146 lgsval4a 15138 gausslemma2dlem0c 15167 gausslemma2dlem0d 15168 gausslemma2dlem1a 15174 gausslemma2dlem2 15178 gausslemma2dlem3 15179 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |