Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnre | Unicode version |
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 8894 | . 2 | |
2 | 1 | sseli 3149 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 cr 7785 cn 8890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-in 3133 df-ss 3140 df-int 3841 df-inn 8891 |
This theorem is referenced by: nnrei 8899 peano2nn 8902 nn1suc 8909 nnge1 8913 nnle1eq1 8914 nngt0 8915 nnnlt1 8916 nnap0 8919 nn2ge 8923 nn1gt1 8924 nndivre 8926 nnrecgt0 8928 nnsub 8929 arch 9144 nnrecl 9145 bndndx 9146 nn0ge0 9172 0mnnnnn0 9179 nnnegz 9227 elnnz 9234 elz2 9295 gtndiv 9319 prime 9323 btwnz 9343 qre 9596 elpq 9619 elpqb 9620 nnrp 9632 nnledivrp 9735 fzo1fzo0n0 10151 elfzo0le 10153 fzonmapblen 10155 ubmelfzo 10168 fzonn0p1p1 10181 elfzom1p1elfzo 10182 ubmelm1fzo 10194 subfzo0 10210 adddivflid 10260 flltdivnn0lt 10272 intfracq 10288 flqdiv 10289 m1modnnsub1 10338 addmodid 10340 modfzo0difsn 10363 nnlesq 10591 facndiv 10685 faclbnd 10687 faclbnd3 10689 bcval5 10709 seq3coll 10788 caucvgre 10956 efaddlem 11648 nndivdvds 11769 nno 11876 nnoddm1d2 11880 divalglemnn 11888 divalg2 11896 ndvdsadd 11901 gcdmultiple 11986 gcdmultiplez 11987 gcdzeq 11988 sqgcd 11995 dvdssqlem 11996 lcmgcdlem 12042 coprmgcdb 12053 qredeq 12061 qredeu 12062 prmdvdsfz 12104 sqrt2irr 12127 divdenle 12162 phibndlem 12181 hashgcdlem 12203 oddprm 12224 pythagtriplem10 12234 pythagtriplem12 12240 pythagtriplem14 12242 pythagtriplem16 12244 pythagtriplem19 12247 pclemub 12252 pc2dvds 12294 pcmpt 12306 fldivp1 12311 pcbc 12314 infpnlem1 12322 oddennn 12358 exmidunben 12392 mulgnegnn 12852 lgsval4a 13974 |
Copyright terms: Public domain | W3C validator |