| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnre | Unicode version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssre 9011 |
. 2
| |
| 2 | 1 | sseli 3180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3876 df-inn 9008 |
| This theorem is referenced by: nnrei 9016 peano2nn 9019 nn1suc 9026 nnge1 9030 nnle1eq1 9031 nngt0 9032 nnnlt1 9033 nnap0 9036 nn2ge 9040 nn1gt1 9041 nndivre 9043 nnrecgt0 9045 nnsub 9046 arch 9263 nnrecl 9264 bndndx 9265 nn0ge0 9291 0mnnnnn0 9298 nnnegz 9346 elnnz 9353 elz2 9414 gtndiv 9438 prime 9442 btwnz 9462 qre 9716 elpq 9740 elpqb 9741 nnrp 9755 nnledivrp 9858 fzo1fzo0n0 10276 elfzo0le 10278 fzonmapblen 10280 ubmelfzo 10293 fzonn0p1p1 10306 elfzom1p1elfzo 10307 ubmelm1fzo 10319 subfzo0 10335 adddivflid 10399 flltdivnn0lt 10411 intfracq 10429 flqdiv 10430 m1modnnsub1 10479 addmodid 10481 modfzo0difsn 10504 nnlesq 10752 facndiv 10848 faclbnd 10850 faclbnd3 10852 bcval5 10872 seq3coll 10951 caucvgre 11163 efaddlem 11856 nndivdvds 11978 nno 12088 nnoddm1d2 12092 divalglemnn 12100 divalg2 12108 ndvdsadd 12113 gcdmultiple 12212 gcdmultiplez 12213 gcdzeq 12214 sqgcd 12221 dvdssqlem 12222 lcmgcdlem 12270 coprmgcdb 12281 qredeq 12289 qredeu 12290 prmdvdsfz 12332 sqrt2irr 12355 divdenle 12390 phibndlem 12409 hashgcdlem 12431 oddprm 12453 pythagtriplem10 12463 pythagtriplem12 12469 pythagtriplem14 12471 pythagtriplem16 12473 pythagtriplem19 12476 pclemub 12481 pc2dvds 12524 pcmpt 12537 fldivp1 12542 pcbc 12545 infpnlem1 12553 oddennn 12634 exmidunben 12668 mulgnegnn 13338 znidomb 14290 lgsval4a 15347 gausslemma2dlem0c 15376 gausslemma2dlem0d 15377 gausslemma2dlem1a 15383 gausslemma2dlem2 15387 gausslemma2dlem3 15388 lgsquadlem1 15402 lgsquadlem2 15403 2lgslem1a1 15411 |
| Copyright terms: Public domain | W3C validator |