| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnre | Unicode version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssre 8994 |
. 2
| |
| 2 | 1 | sseli 3179 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3875 df-inn 8991 |
| This theorem is referenced by: nnrei 8999 peano2nn 9002 nn1suc 9009 nnge1 9013 nnle1eq1 9014 nngt0 9015 nnnlt1 9016 nnap0 9019 nn2ge 9023 nn1gt1 9024 nndivre 9026 nnrecgt0 9028 nnsub 9029 arch 9246 nnrecl 9247 bndndx 9248 nn0ge0 9274 0mnnnnn0 9281 nnnegz 9329 elnnz 9336 elz2 9397 gtndiv 9421 prime 9425 btwnz 9445 qre 9699 elpq 9723 elpqb 9724 nnrp 9738 nnledivrp 9841 fzo1fzo0n0 10259 elfzo0le 10261 fzonmapblen 10263 ubmelfzo 10276 fzonn0p1p1 10289 elfzom1p1elfzo 10290 ubmelm1fzo 10302 subfzo0 10318 adddivflid 10382 flltdivnn0lt 10394 intfracq 10412 flqdiv 10413 m1modnnsub1 10462 addmodid 10464 modfzo0difsn 10487 nnlesq 10735 facndiv 10831 faclbnd 10833 faclbnd3 10835 bcval5 10855 seq3coll 10934 caucvgre 11146 efaddlem 11839 nndivdvds 11961 nno 12071 nnoddm1d2 12075 divalglemnn 12083 divalg2 12091 ndvdsadd 12096 gcdmultiple 12187 gcdmultiplez 12188 gcdzeq 12189 sqgcd 12196 dvdssqlem 12197 lcmgcdlem 12245 coprmgcdb 12256 qredeq 12264 qredeu 12265 prmdvdsfz 12307 sqrt2irr 12330 divdenle 12365 phibndlem 12384 hashgcdlem 12406 oddprm 12428 pythagtriplem10 12438 pythagtriplem12 12444 pythagtriplem14 12446 pythagtriplem16 12448 pythagtriplem19 12451 pclemub 12456 pc2dvds 12499 pcmpt 12512 fldivp1 12517 pcbc 12520 infpnlem1 12528 oddennn 12609 exmidunben 12643 mulgnegnn 13262 znidomb 14214 lgsval4a 15263 gausslemma2dlem0c 15292 gausslemma2dlem0d 15293 gausslemma2dlem1a 15299 gausslemma2dlem2 15303 gausslemma2dlem3 15304 lgsquadlem1 15318 lgsquadlem2 15319 2lgslem1a1 15327 |
| Copyright terms: Public domain | W3C validator |