![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnred | Unicode version |
Description: A positive integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnred.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nnred |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 8634 |
. 2
![]() ![]() ![]() ![]() | |
2 | nnred.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sseldi 3061 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-cnex 7636 ax-resscn 7637 ax-1re 7639 ax-addrcl 7642 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-v 2659 df-in 3043 df-ss 3050 df-int 3738 df-inn 8631 |
This theorem is referenced by: exbtwnzlemstep 9918 qbtwnrelemcalc 9926 qbtwnre 9927 flqdiv 9987 modqmulnn 10008 modifeq2int 10052 modaddmodup 10053 modaddmodlo 10054 modsumfzodifsn 10062 addmodlteq 10064 bernneq3 10307 expnbnd 10308 facwordi 10379 faclbnd 10380 faclbnd2 10381 faclbnd3 10382 faclbnd6 10383 facubnd 10384 facavg 10385 bcp1nk 10401 bcval5 10402 caucvgrelemcau 10644 caucvgre 10645 cvg1nlemcxze 10646 cvg1nlemcau 10648 cvg1nlemres 10649 resqrexlemdecn 10676 resqrexlemga 10687 fsum3cvg3 11057 divcnv 11158 cvgratnnlembern 11184 cvgratnnlemseq 11187 cvgratnnlemabsle 11188 cvgratnnlemsumlt 11189 cvgratnnlemrate 11191 cvgratz 11193 eftabs 11213 efcllemp 11215 ege2le3 11228 efcj 11230 eftlub 11247 eflegeo 11259 eirraplem 11331 dvdslelemd 11389 nno 11451 nnoddm1d2 11455 divalglemnqt 11465 divalglemeunn 11466 dvdsbnd 11493 sqgcd 11563 lcmgcdlem 11604 ncoprmgcdne1b 11616 prmind2 11647 coprm 11668 prmfac1 11676 sqrt2irraplemnn 11702 divdenle 11720 qnumgt0 11721 nn0sqrtelqelz 11729 hashdvds 11742 znnen 11756 exmidunben 11784 strleund 11890 cvgcmp2nlemabs 12919 |
Copyright terms: Public domain | W3C validator |